Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
RSS Ins Вконтакте twitter facebook
COMPARING FIDUCIAL MARKERS PERFORMANCE FOR A TASK OF A HUMANOID ROBOT SELF-CALIBRATION OF MANIPULATORS: A PILOT EXPERIMENTAL STUDY
Форма представленияРоссийские монографии
Год публикации2018
Языканглийский
  • Магид Евгений Аркадьевич, автор
  • Сагитов Артур Газизович, автор
  • Шабалина Ксения Сергеевна, автор
  • Свинин Михаил , автор
  • Библиографическое описание на языке оригинала Comparing Fiducial Markers Performance for a Task of a Humanoid Robot Self-calibration of Manipulators: A Pilot Experimental Study, ICR 2018: Interactive Collaborative Robotics pp 249-258
    Аннотация This paper presents our pilot study of experiments automation with a real robot in order to compare performance of different fiducial marker systems, which could be used in automated camera calibration process. We used Russian humanoid robot AR-601M and automated it?s manipulators for performing joint rotations. This paper is an extension of our previous work on ARTag, AprilTag and CALTag marker comparison in laboratory settings with large-sized markers that had showed significant superiority of CALTag system over the competitors. This time the markers were scaled down and placed on AR-601M humanoid?s palms. We automated experiments of marker rotations, analyzed the results and compared them with the previously obtained results of manual experiments with large-sized markers. The new automated pilot experiments, which were performed both in pure laboratory conditions and pseudo field environments, demonstrated significant differences with previously obtained manual experimental results:
    Ключевые слова ARTag, AprilTag, CALTag, Fiducial marker systems, AR-601M, Humanoid robot, Experimental comparison
    URL https://link.springer.com/chapter/10.1007/978-3-319-99582-3_26
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=185712

    Полная запись метаданных