Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2015 |
Язык | английский |
|
Бикчантаев Ильдар Ахмедович, автор
|
Библиографическое описание на языке оригинала |
Bikchantaev I. A. Inner uniqueness theorem for second order linear elliptic equation with constant coefficients//Russian Mathematics (Iz. VUZ), 2015, Vol. 59, No. 5, pp. 13-16. |
Аннотация |
Abstract?We consider solution f to a linear elliptic differential equation of second order, and prove
that it vanishes if zeros of f condense to two points along non-collinear rays. The requirement of
non-collinearity of the rays is essential if the roots of the characteristic equation are distinct. In the case of equal roots of the characteristic equation this property is valid if and only if the rays do not belong to common straight line. |
Ключевые слова |
elliptic equation, uniqueness theorem |
Название журнала |
Russian Mathematics
|
URL |
http://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603139056&zone= |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=121425 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчантаев Ильдар Ахмедович |
ru_RU |
dc.date.accessioned |
2015-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2015-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2015 |
ru_RU |
dc.identifier.citation |
Bikchantaev I. A. Inner uniqueness theorem for second order linear elliptic equation with constant coefficients//Russian Mathematics (Iz. VUZ), 2015, Vol. 59, No. 5, pp. 13-16. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=121425 |
ru_RU |
dc.description.abstract |
Russian Mathematics |
ru_RU |
dc.description.abstract |
Abstract?We consider solution f to a linear elliptic differential equation of second order, and prove
that it vanishes if zeros of f condense to two points along non-collinear rays. The requirement of
non-collinearity of the rays is essential if the roots of the characteristic equation are distinct. In the case of equal roots of the characteristic equation this property is valid if and only if the rays do not belong to common straight line. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
elliptic equation |
ru_RU |
dc.subject |
uniqueness theorem |
ru_RU |
dc.title |
Inner uniqueness theorem for second order linear elliptic equation with constant coefficient |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|