Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2014 |
Язык | английский |
|
Даутов Рафаил Замилович, автор
|
Библиографическое описание на языке оригинала |
Dautov R. Z., Fedotov E. M., Abstract Theory of Hybridizable Discontinuous Galerkin Methods for Second-Order Quasilinear Elliptic Problems//COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS. - 2014. - Vol.54, Is.3. - P.474-490. |
Аннотация |
An abstract theory for discretizations of second
order quasilinear elliptic problems based on the mixed
hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the
interelement boundaries. Stability and optimal error estimates are obtained under minimal assump
tions on the approximating space. It is shown that the schemes admit an efficient numerical imple
mentation. |
Ключевые слова |
discontinuous Galerkin method, hybridizable discontinuous Galerkin schemes, mixed method, quasilinear elliptic equations, error estimate, LBB condition |
Название журнала |
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=123939 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Даутов Рафаил Замилович |
ru_RU |
dc.date.accessioned |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2014-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2014 |
ru_RU |
dc.identifier.citation |
Dautov R. Z., Fedotov E. M., Abstract Theory of Hybridizable Discontinuous Galerkin Methods for Second-Order Quasilinear Elliptic Problems//COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS. - 2014. - Vol.54, Is.3. - P.474-490. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=123939 |
ru_RU |
dc.description.abstract |
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS |
ru_RU |
dc.description.abstract |
An abstract theory for discretizations of second
order quasilinear elliptic problems based on the mixed
hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the
interelement boundaries. Stability and optimal error estimates are obtained under minimal assump
tions on the approximating space. It is shown that the schemes admit an efficient numerical imple
mentation. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
discontinuous Galerkin method |
ru_RU |
dc.subject |
hybridizable discontinuous Galerkin schemes |
ru_RU |
dc.subject |
mixed method |
ru_RU |
dc.subject |
quasilinear elliptic equations |
ru_RU |
dc.subject |
error estimate |
ru_RU |
dc.subject |
LBB condition |
ru_RU |
dc.title |
Abstract Theory of Hybridizable Discontinuous Galerkin Methods for Second-Order Quasilinear Elliptic Problems |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|