Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2013 |
Язык | английский |
|
Лапин Александр Васильевич, автор
|
Библиографическое описание на языке оригинала |
E. Laitinen, A. Lapin. Iterative solution methods for large-scale constrained saddle-point problems// In: ”Numerical Methods for Differential Equations, Optimization and Technological Problems”, Comp. Meth. Appl. Sc., 27., Springer. 2013. P. 19-39. |
Аннотация |
Iterative solution methods for a class of finite-dimensional constrained
saddle point problems are developed. These problems arise if variational inequalities and minimization problems are solved with the help of mixed finite element statements involving primal and dual variables. In the paper, we suggest several new approaches to the construction of saddle point problems and present convergence results for the iteration methods. Numerical results confirm the theoretical analysis. |
Ключевые слова |
variational inequality, ptimal control problem, finite element
method, constrained saddle point problem, iterative methods |
Название журнала |
Computational methods in applies sciences
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=125852 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Лапин Александр Васильевич |
ru_RU |
dc.date.accessioned |
2013-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2013-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2013 |
ru_RU |
dc.identifier.citation |
E. Laitinen, A. Lapin. Iterative solution methods for large-scale constrained saddle-point problems// In: ”Numerical Methods for Differential Equations, Optimization and Technological Problems”, Comp. Meth. Appl. Sc., 27., Springer. 2013. P. 19-39. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=125852 |
ru_RU |
dc.description.abstract |
Computational methods in applies sciences |
ru_RU |
dc.description.abstract |
Iterative solution methods for a class of finite-dimensional constrained
saddle point problems are developed. These problems arise if variational inequalities and minimization problems are solved with the help of mixed finite element statements involving primal and dual variables. In the paper, we suggest several new approaches to the construction of saddle point problems and present convergence results for the iteration methods. Numerical results confirm the theoretical analysis. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
variational inequality |
ru_RU |
dc.subject |
ptimal control problem |
ru_RU |
dc.subject |
finite element
method |
ru_RU |
dc.subject |
constrained saddle point problem |
ru_RU |
dc.subject |
iterative methods |
ru_RU |
dc.title |
Iterative solution methods for large-scale constrained saddle-point problems |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|