Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Коннов Игорь Васильевич, автор
|
Библиографическое описание на языке оригинала |
Konnov I.V., A method of bi-coordinate variations with tolerances and its convergence//Russian Mathematics. - 2016. - Vol.60, Is.1. - P.68-72. |
Аннотация |
We propose a method of bi-coordinate variations for
optimal resource allocation problems, which involve simplex type constraints. It consists in making coordinate-wise steps together with special threshold control and tolerances whose values reduce sequentially. The method is simpler essentially than the usual gradient ones, which enables one to apply it to large dimensional optimization problems. We establish its convergence and rate of
convergence under rather mild assumptions. |
Ключевые слова |
Optimization problems, resource allocation, bi-coordinate variations, threshold control, rate of convergence.
|
Название журнала |
Russian Mathematics
|
URL |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84953206515&partnerID=40&md5=ef13ce3aadbec6af3f77c664f8d3123c |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=126523 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Коннов Игорь Васильевич |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Konnov I.V., A method of bi-coordinate variations with tolerances and its convergence//Russian Mathematics. - 2016. - Vol.60, Is.1. - P.68-72. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=126523 |
ru_RU |
dc.description.abstract |
Russian Mathematics |
ru_RU |
dc.description.abstract |
We propose a method of bi-coordinate variations for
optimal resource allocation problems, which involve simplex type constraints. It consists in making coordinate-wise steps together with special threshold control and tolerances whose values reduce sequentially. The method is simpler essentially than the usual gradient ones, which enables one to apply it to large dimensional optimization problems. We establish its convergence and rate of
convergence under rather mild assumptions. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Optimization problems |
ru_RU |
dc.subject |
resource allocation |
ru_RU |
dc.subject |
bi-coordinate variations |
ru_RU |
dc.subject |
threshold control |
ru_RU |
dc.subject |
rate of convergence.
|
ru_RU |
dc.title |
A method of bi-coordinate variations with tolerances and its convergence |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|