Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
MODERNIZED ALGORITHM OF NEURAL NETWORK INITIAL WEIGHTING FACTORS DURING THE DIAGNOSIS OF DIESEL ENGINE FAULTS
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2015
Языканглийский
  • Зубков Евгений Витальевич, автор
  • Илюхин Алексей Николаевич, автор
  • Библиографическое описание на языке оригинала Modernized algorithm of neural network initial weighting factors during the diagnosis of diesel engine faults /Ilyukhin, A.N., Zubkov, E.V. //International Journal of Applied Engineering Research. - 2015. - 10 (24). - pp. 44848-44854
    Аннотация Solution of the design problem, development and future use of the automated test systems (ATS) of internal combustion engines (ICE) involves, first of all, the analysis of a number of important requirements for the development of technical, mathematical, software, information, linguistic, organization and methodological support of the automated system. Currently, the need for a widespread adoption and operation of the automated systems in actual test conditions of stations of manufacturers and engineering research institutions imposes certain restrictions on designing computer-aided design facilities, real test technologies of various types and modifications of internal combustion engines. This situation comes from a sufficiently large number of tested engines, aggregates and units of different modifications, and also the need for phase-by-phase error elimination in the existing algorithms, including when conducting research and development test of engines. Requirements of real engine
    Ключевые слова automated test systems,combustion engines
    Название журнала International Journal of Applied Engineering Research
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=126592

    Полная запись метаданных