Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Мосин Сергей Геннадьевич, автор
|
Библиографическое описание на языке оригинала |
Mosin, S. "A technique of analog circuits testing and diagnosis based on neuromorphic classifier," in Advances in Intelligent Systems and Computing
Vol. 425, 2016, pp. 381-393. |
Аннотация |
The technique of functional testing the analog integrated circuits based on neuromorphic classifier (NC) has been proposed. The structure of NC providing detection both catastrophic and parametric faults taking into account the tolerance on parameters of internal components has been described. The NC ensures the associative fault detection reducing a time on diagnosis in comparison with parametric tables. The approach to selection of essential characteristics used for the NC training has been represented. The wavelet transform of transient responses, Monte Carlo method and statistical processing are used for the essential characteristics selection with maximum distance between faulty and fault-free conditions. The experimental results for the active filter demonstrating high fault coverage and low likelihood of alpha and beta errors at diagnosis have been shown. |
Ключевые слова |
Analog integrated circuits, Monte Carlo methods, Reconfigurable hardware, Signal processing, Wavelet transforms,
Circuits testing, Fault coverages, Functional testing, Neuromorphic classifier, Parametric fault, Statistical processing |
Название журнала |
Advances in Intelligent Systems and Computing
|
URL |
http://link.springer.com/chapter/10.1007%2F978-3-319-28658-7_33 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=127241 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Мосин Сергей Геннадьевич |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Mosin, S. "A technique of analog circuits testing and diagnosis based on neuromorphic classifier," in Advances in Intelligent Systems and Computing
Vol. 425, 2016, pp. 381-393. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=127241 |
ru_RU |
dc.description.abstract |
Advances in Intelligent Systems and Computing |
ru_RU |
dc.description.abstract |
The technique of functional testing the analog integrated circuits based on neuromorphic classifier (NC) has been proposed. The structure of NC providing detection both catastrophic and parametric faults taking into account the tolerance on parameters of internal components has been described. The NC ensures the associative fault detection reducing a time on diagnosis in comparison with parametric tables. The approach to selection of essential characteristics used for the NC training has been represented. The wavelet transform of transient responses, Monte Carlo method and statistical processing are used for the essential characteristics selection with maximum distance between faulty and fault-free conditions. The experimental results for the active filter demonstrating high fault coverage and low likelihood of alpha and beta errors at diagnosis have been shown. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Analog integrated circuits |
ru_RU |
dc.subject |
Monte Carlo methods |
ru_RU |
dc.subject |
Reconfigurable hardware |
ru_RU |
dc.subject |
Signal processing |
ru_RU |
dc.subject |
Wavelet transforms |
ru_RU |
dc.subject |
Circuits testing |
ru_RU |
dc.subject |
Fault coverages |
ru_RU |
dc.subject |
Functional testing |
ru_RU |
dc.subject |
Neuromorphic classifier |
ru_RU |
dc.subject |
Parametric fault |
ru_RU |
dc.subject |
Statistical processing |
ru_RU |
dc.title |
A technique of analog circuits testing and diagnosis based on neuromorphic classifier |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|