Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Авхадиев Фарит Габидинович, автор
|
Библиографическое описание на языке оригинала |
Avkhadiev F.G. Hardy-Rellich inequalities in domains of the Euclidean space. J. Math. Anal. Appl., 442(2016), 469-484. |
Аннотация |
For test functiond supported in a domain of the Euclidean space we consider the Hardy-Rellich inequality when the weight is a power of the distance to the boundary of the domain. We examine the Owen result foe convex domain in the case of non-convex domain/ It is proved that a positive constant for a plane domain exists if and only if the boundary of the domain is a uniformly perfect set. Also, we obtain several sharp estimates of constants for multidimensional non-convex domains. |
Ключевые слова |
Hardy-Rellich inequality, non-convex domain, uniformly perfect set |
Название журнала |
J MATH ANAL APPL
|
URL |
http://www.elsevier.com/locate/jmaa |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=131919 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Авхадиев Фарит Габидинович |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Avkhadiev F.G. Hardy-Rellich inequalities in domains of the Euclidean space. J. Math. Anal. Appl., 442(2016), 469-484. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=131919 |
ru_RU |
dc.description.abstract |
J MATH ANAL APPL |
ru_RU |
dc.description.abstract |
For test functiond supported in a domain of the Euclidean space we consider the Hardy-Rellich inequality when the weight is a power of the distance to the boundary of the domain. We examine the Owen result foe convex domain in the case of non-convex domain/ It is proved that a positive constant for a plane domain exists if and only if the boundary of the domain is a uniformly perfect set. Also, we obtain several sharp estimates of constants for multidimensional non-convex domains. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hardy-Rellich inequality |
ru_RU |
dc.subject |
non-convex domain |
ru_RU |
dc.subject |
uniformly perfect set |
ru_RU |
dc.title |
Hardy-Rellich inequalities in domains of the Euclidean space |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|