Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Заикин Артем Александрович, автор
|
Библиографическое описание на языке оригинала |
Zaikin A.A. On asymptotic expansion of posterior distribution // Lobachevskii Journal of Mathematics. - 2016 - Volume 37, Issue 4. - pp. 515–525. |
Аннотация |
The paper suggests a new asymptotic expansion of posterior distribution, which improves the known normal asymptotic. The main difference from the previous works on this subject is that the suggested expansion is calculated for the deviation from the true parameter value and not from the value of the maximum likelihood estimator, as it has been done before. This setting is more appropriate for Bayesian and d-posterior approaches to a statistical inference problem. The new expansion can be derived under weaker assumptions than the previously known. Moreover, an asymptotic expansion for the moments of posterior distribution is also presented. The accuracy of the expansion is tested on binomial model with beta prior and results are compared to the Johnson?s expansion. |
Ключевые слова |
Bayesian analysis, posterior distribution, asymptotic expansion |
Название журнала |
Lobachevskii Journal of Mathematics
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=135542 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Заикин Артем Александрович |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Zaikin A.A. On asymptotic expansion of posterior distribution // Lobachevskii Journal of Mathematics. - 2016 - Volume 37, Issue 4. - pp. 515–525. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=135542 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
The paper suggests a new asymptotic expansion of posterior distribution, which improves the known normal asymptotic. The main difference from the previous works on this subject is that the suggested expansion is calculated for the deviation from the true parameter value and not from the value of the maximum likelihood estimator, as it has been done before. This setting is more appropriate for Bayesian and d-posterior approaches to a statistical inference problem. The new expansion can be derived under weaker assumptions than the previously known. Moreover, an asymptotic expansion for the moments of posterior distribution is also presented. The accuracy of the expansion is tested on binomial model with beta prior and results are compared to the Johnson?s expansion. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Bayesian analysis |
ru_RU |
dc.subject |
posterior distribution |
ru_RU |
dc.subject |
asymptotic expansion |
ru_RU |
dc.title |
On asymptotic expansion of posterior distribution |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|