Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Даутов Рафаил Замилович, автор
|
Библиографическое описание на языке оригинала |
Dautov R.Z, Fedotov E.M., Hybridized schemes of the discontinuous Galerkin method for stationary convection-diffusion problems//Differential Equations. - 2016. - Vol.52, Is.7. - P.906-925. |
Аннотация |
An abstract theory for discretizations of second
order quasilinear elliptic problems based on the mixed
hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the interelement boundaries. Stability and optimal error estimates are obtained under minimal assump
tions on the approximating space. It is shown that the schemes admit an efficient numerical imple
mentation. |
Ключевые слова |
Hybridized scheme, discontinuous Galerkin method, convection-diffusion problems |
Название журнала |
Differential Equations
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981225512&partnerID=40&md5=613e9c05a2150ec912f99597631acc55 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=136141 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Даутов Рафаил Замилович |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Dautov R.Z, Fedotov E.M., Hybridized schemes of the discontinuous Galerkin method for stationary convection-diffusion problems//Differential Equations. - 2016. - Vol.52, Is.7. - P.906-925. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=136141 |
ru_RU |
dc.description.abstract |
Differential Equations |
ru_RU |
dc.description.abstract |
An abstract theory for discretizations of second
order quasilinear elliptic problems based on the mixed
hybrid discontinuous Galerkin method. Discrete schemes are formulated in terms of approximations of the solution to the problem, its gradient, flux, and the trace of the solution on the interelement boundaries. Stability and optimal error estimates are obtained under minimal assump
tions on the approximating space. It is shown that the schemes admit an efficient numerical imple
mentation. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hybridized scheme |
ru_RU |
dc.subject |
discontinuous Galerkin method |
ru_RU |
dc.subject |
convection-diffusion problems |
ru_RU |
dc.title |
Hybridized schemes of the discontinuous Galerkin method for stationary convection-diffusion problems |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|