Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Хамзин Айрат Альбертович, автор
|
Библиографическое описание на языке оригинала |
Nigmatullin R.R, Khamzin A.A, Baleanu D., On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation//Mathematical Methods in the Applied Sciences. - 2016. - Vol.39, Is..2983 -2992 . |
Аннотация |
In the given paper, a special method of representation of the Mittag-Leffler functions and their multivariate generalizations
in the form of the Laplace integrals is suggested. The method is based on the usage of the generalized multiplication
Efros theorem. The possibilities of a new method are demonstrated on derivation of the integral representations for
relaxation functions used in the anomalous dielectric relaxation in time domain. |
Ключевые слова |
Mittag-Leffler functions, generalized multiplication efros theorem, anomalous dielectric relaxation, fractional kinetics,
laplace transform |
Название журнала |
Mathematical Methods in the Applied Sciences
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954288671&partnerID=40&md5=48c03db9e26beb92e4978f797603b3ca |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=137955 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Хамзин Айрат Альбертович |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Nigmatullin R.R, Khamzin A.A, Baleanu D., On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation//Mathematical Methods in the Applied Sciences. - 2016. - Vol.39, Is..2983 -2992 . |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=137955 |
ru_RU |
dc.description.abstract |
Mathematical Methods in the Applied Sciences |
ru_RU |
dc.description.abstract |
In the given paper, a special method of representation of the Mittag-Leffler functions and their multivariate generalizations
in the form of the Laplace integrals is suggested. The method is based on the usage of the generalized multiplication
Efros theorem. The possibilities of a new method are demonstrated on derivation of the integral representations for
relaxation functions used in the anomalous dielectric relaxation in time domain. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Mittag-Leffler functions |
ru_RU |
dc.subject |
generalized multiplication efros theorem |
ru_RU |
dc.subject |
anomalous dielectric relaxation |
ru_RU |
dc.subject |
fractional kinetics |
ru_RU |
dc.subject |
laplace transform |
ru_RU |
dc.title |
On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|