Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Новиков Андрей Андреевич, автор
|
Библиографическое описание на языке оригинала |
Novikov A.A, Eskandarian Z., Inductive and projective limits of Banach spaces of measurable functions with order unities with respect to power parameter//Russian Mathematics. - 2016. - Vol.60, Is.10. - P.67-71. |
Аннотация |
We prove that a measurable function f is bounded and invertible if and only if there exist at least two equivalent norms by order unit spaces with order unities fα and fβ with α > β > 0. We show that it is natural to understand the limit of ordered vector spaces with order unities fα (α approaches to infinity) as a direct sum of one inductive and one projective limits. We also obtain some properties for the corresponding limit topologies. |
Ключевые слова |
inductive limit, projective limit, initial topology, final topology, order unit space, measurable functions, Banach space, Fréchet space, locally convex space |
Название журнала |
Russian Mathematics
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988884463&partnerID=40&md5=8150a6bf326494a5ee084432b5217449 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=148082 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Новиков Андрей Андреевич |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Novikov A.A, Eskandarian Z., Inductive and projective limits of Banach spaces of measurable functions with order unities with respect to power parameter//Russian Mathematics. - 2016. - Vol.60, Is.10. - P.67-71. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=148082 |
ru_RU |
dc.description.abstract |
Russian Mathematics |
ru_RU |
dc.description.abstract |
We prove that a measurable function f is bounded and invertible if and only if there exist at least two equivalent norms by order unit spaces with order unities fα and fβ with α > β > 0. We show that it is natural to understand the limit of ordered vector spaces with order unities fα (α approaches to infinity) as a direct sum of one inductive and one projective limits. We also obtain some properties for the corresponding limit topologies. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
inductive limit |
ru_RU |
dc.subject |
projective limit |
ru_RU |
dc.subject |
initial topology |
ru_RU |
dc.subject |
final topology |
ru_RU |
dc.subject |
order unit space |
ru_RU |
dc.subject |
measurable functions |
ru_RU |
dc.subject |
Banach space |
ru_RU |
dc.subject |
Fréchet space |
ru_RU |
dc.subject |
locally convex space |
ru_RU |
dc.title |
Inductive and projective limits of Banach spaces of measurable functions with order unities with respect to power parameter |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|