Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Федотов Евгений Михайлович, автор
|
Библиографическое описание на языке оригинала |
Dautov R Z and Fedotov E M HDG schemes for stationary convection-diffusion problems / 11th International Conference on «Mesh methods for boundary-value problems and applications« IOP Publishing.- IOP Conf. Series: Materials Science and Engineering 158 (2016) 012028 doi:10.1088/1757-899X/158/1/012028 |
Аннотация |
For stationary linear convection-diffusion problems, we construct and study a hybridized scheme of the discontinuous Galerkin method on the basis of an extended mixed statement of the problem. Discrete schemes can be used for the solution of equations degenerating in the leading part and are stated via approximations to the solution of the problem, its gradient, the flow, and the restriction of the solution to the boundaries of elements. For the spaces of finite elements, we represent minimal conditions responsible for the solvability, stability and accuracy of the schemes. |
Ключевые слова |
Differential equation, finite element method, solvability, stability, accuracy of the mesh scheme |
Название журнала |
IOP Conference Series: Materials Science and Engineering
|
URL |
http://iopscience.iop.org/1757-899X/158/1/012028 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=150005 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Федотов Евгений Михайлович |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Dautov R Z and Fedotov E M HDG schemes for stationary convection-diffusion problems / 11th International Conference on «Mesh methods for boundary-value problems and applications« IOP Publishing.- IOP Conf. Series: Materials Science and Engineering 158 (2016) 012028 doi:10.1088/1757-899X/158/1/012028 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=150005 |
ru_RU |
dc.description.abstract |
IOP Conference Series: Materials Science and Engineering |
ru_RU |
dc.description.abstract |
For stationary linear convection-diffusion problems, we construct and study a hybridized scheme of the discontinuous Galerkin method on the basis of an extended mixed statement of the problem. Discrete schemes can be used for the solution of equations degenerating in the leading part and are stated via approximations to the solution of the problem, its gradient, the flow, and the restriction of the solution to the boundaries of elements. For the spaces of finite elements, we represent minimal conditions responsible for the solvability, stability and accuracy of the schemes. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Differential equation |
ru_RU |
dc.subject |
finite element method |
ru_RU |
dc.subject |
solvability |
ru_RU |
dc.subject |
stability |
ru_RU |
dc.subject |
accuracy of the mesh scheme |
ru_RU |
dc.title |
HDG schemes for stationary convection-diffusion problems |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|