Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Лернер Эдуард Юльевич, автор
|
|
Мухамеджанова Софья Альфисовна, автор
|
Библиографическое описание на языке оригинала |
A. P. Kuptsov, E. Yu. Lerner, S. A. Mukhamedjanova, Flow polynomials as Feynman amplitudes and their $\alpha$-representation, Electron. J. Combin., 24 (2017), no. 1, paper 11, 19 pp. |
Аннотация |
Let $G$ be a connected graph; denote by $\tau(G)$ the set of its spanning trees. Let $\mathbb F_q$ be a finite field, $s(\alpha,G)=\sum_{T\in\tau(G)} \prod_{e \in E(T)} \alpha_e$, where $\alpha_e\in \mathbb F_q$. Kontsevich
conjectured in 1997 that the number of nonzero values of $s(\alpha, G)$ is a polynomial in $q$ for all graphs. This conjecture was disproved by Brosnan and Belkale. In this paper, using the standard technique of the Fourier transformation of Feynman amplitudes, we express the flow polynomial $F_G(q)$ in terms of the ``correct'' Kontsevich formula. Our formula represents $F_G(q)$ as a linear combination of Legendre symbols of $s(\alpha, H)$ with coefficients $\pm 1/q^{(|V(H)|-1)/2}$, where $H$ is a contracted graph of $G$ depending on $\alpha\in \left(\mathbb F^*_q\right)^{E(G)}$, and $|V(H)|$ is odd. |
Ключевые слова |
Flow polynomial, Kontsevich's conjecture, Laplacian matrix, Feynman amplitudes, Legendre symbol, Tutte 5-flow conjecture |
Название журнала |
The Electronic Journal of Combinatorics
|
URL |
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p11/pdf |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=151221 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Лернер Эдуард Юльевич |
ru_RU |
dc.contributor.author |
Мухамеджанова Софья Альфисовна |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
A. P. Kuptsov, E. Yu. Lerner, S. A. Mukhamedjanova, Flow polynomials as Feynman amplitudes and their $\alpha$-representation, Electron. J. Combin., 24 (2017), no. 1, paper 11, 19 pp. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=151221 |
ru_RU |
dc.description.abstract |
The Electronic Journal of Combinatorics |
ru_RU |
dc.description.abstract |
Let $G$ be a connected graph; denote by $\tau(G)$ the set of its spanning trees. Let $\mathbb F_q$ be a finite field, $s(\alpha,G)=\sum_{T\in\tau(G)} \prod_{e \in E(T)} \alpha_e$, where $\alpha_e\in \mathbb F_q$. Kontsevich
conjectured in 1997 that the number of nonzero values of $s(\alpha, G)$ is a polynomial in $q$ for all graphs. This conjecture was disproved by Brosnan and Belkale. In this paper, using the standard technique of the Fourier transformation of Feynman amplitudes, we express the flow polynomial $F_G(q)$ in terms of the ``correct'' Kontsevich formula. Our formula represents $F_G(q)$ as a linear combination of Legendre symbols of $s(\alpha, H)$ with coefficients $\pm 1/q^{(|V(H)|-1)/2}$, where $H$ is a contracted graph of $G$ depending on $\alpha\in \left(\mathbb F^*_q\right)^{E(G)}$, and $|V(H)|$ is odd. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Flow polynomial |
ru_RU |
dc.subject |
Kontsevich's conjecture |
ru_RU |
dc.subject |
Laplacian matrix |
ru_RU |
dc.subject |
Feynman amplitudes |
ru_RU |
dc.subject |
Legendre symbol |
ru_RU |
dc.subject |
Tutte 5-flow conjecture |
ru_RU |
dc.title |
Flow Polynomials as Feynman Amplitudes and their α-Representation |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|