Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Магид Евгений Аркадьевич, автор
|
|
Буйвал Александр , автор
Гавриленков Михаил , автор
|
Библиографическое описание на языке оригинала |
Buyval A., Gavrilenkov M., Magid E. A multithreaded algorithm of UAV visual localization based on a 3D model of environment: implementation with CUDA technology and CNN filtering of minor importance objects // ICAROB 2017: International Conference on Artificial Life and Robotics (Miyazaki, Japan; 19-22 January 2017) - p. 356-359. |
Аннотация |
Visual based navigation plays an important role in localization and path planning, especially in GPS-denied environments. This paper presents a visual based localization algorithm for a UAV within an indoor environment. The algorithm uses multithreaded computing CUDA technology and CNN-preprocessing filtering, which is responsible for filtering out dynamic objects. The algorithm is simulated in ROS/Gazebo environment with two different approaches – one uses CPU only and the other uses CPU and GPU - and their performance is compared. |
Ключевые слова |
UAV, visual localization, CNN filtering, CUDA technology |
Название журнала |
International Conference on Artificial Life and Robotics
|
URL |
https://www.semanticscholar.org/paper/A-multithreaded-algorithm-of-UAV-visual-based-on-a-Buyval-Gavrilenkov/471a3ad39d90071038cb364931aa31c2fdc5128a |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=154355 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Магид Евгений Аркадьевич |
ru_RU |
dc.contributor.author |
Буйвал Александр |
ru_RU |
dc.contributor.author |
Гавриленков Михаил |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Buyval A., Gavrilenkov M., Magid E. A multithreaded algorithm of UAV visual localization based on a 3D model of environment: implementation with CUDA technology and CNN filtering of minor importance objects // ICAROB 2017: International Conference on Artificial Life and Robotics (Miyazaki, Japan; 19-22 January 2017) - p. 356-359. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=154355 |
ru_RU |
dc.description.abstract |
International Conference on Artificial Life and Robotics |
ru_RU |
dc.description.abstract |
Visual based navigation plays an important role in localization and path planning, especially in GPS-denied environments. This paper presents a visual based localization algorithm for a UAV within an indoor environment. The algorithm uses multithreaded computing CUDA technology and CNN-preprocessing filtering, which is responsible for filtering out dynamic objects. The algorithm is simulated in ROS/Gazebo environment with two different approaches – one uses CPU only and the other uses CPU and GPU - and their performance is compared. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
UAV |
ru_RU |
dc.subject |
visual localization |
ru_RU |
dc.subject |
CNN filtering |
ru_RU |
dc.subject |
CUDA technology |
ru_RU |
dc.title |
A multithreaded algorithm of UAV visual localization based on a 3D model of environment: implementation with CUDA technology and CNN filtering of minor importance objects |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|