Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2017 |
Язык | русский |
|
Бикчантаев Ильдар Ахмедович, автор
|
Библиографическое описание на языке оригинала |
Бикчантаев И.А. Краевая задача для эллиптического уравнения второго порядка во внешности эллипса// Дифференц. уравнения. 2017, том 53, № 5, c. 630-636.
|
Аннотация |
Рассматривается краевая задача для линейного эллиптического дифференциального уравнения второго порядка с постоянными коэффициентами в области, являющейся внешностью эллипса. Граничные условия задачи содержат значения самой функции и ее нормальной производной. Дано конструктивное решение этой задачи, подсчитано число условий разрешимости неоднородной задачи и число линейно независимых решений однородной. Установлена граничная теорема единственности для решений рассматриваемого уравнения.
|
Ключевые слова |
краевая задача, эллиптическое уравнение, теорема единственности |
Название журнала |
Дифференциальные уравнения
|
URL |
http://www.adobe.com/products/acrobat/readstep2.html |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=157832 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчантаев Ильдар Ахмедович |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Бикчантаев И.А. Краевая задача для эллиптического уравнения второго порядка во внешности эллипса// Дифференц. уравнения. 2017, том 53, № 5, c. 630-636.
|
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=157832 |
ru_RU |
dc.description.abstract |
Дифференциальные уравнения |
ru_RU |
dc.description.abstract |
Рассматривается краевая задача для линейного эллиптического дифференциального уравнения второго порядка с постоянными коэффициентами в области, являющейся внешностью эллипса. Граничные условия задачи содержат значения самой функции и ее нормальной производной. Дано конструктивное решение этой задачи, подсчитано число условий разрешимости неоднородной задачи и число линейно независимых решений однородной. Установлена граничная теорема единственности для решений рассматриваемого уравнения.
|
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
краевая задача |
ru_RU |
dc.subject |
эллиптическое уравнение |
ru_RU |
dc.subject |
теорема единственности |
ru_RU |
dc.title |
Краевая задача для эллиптического уравнения второго порядка во внешности эллипса |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|