Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2017 |
Язык | русский |
|
Илюхин Алексей Николаевич, автор
|
|
Гибадуллин Руслан Артурович, автор
|
Библиографическое описание на языке оригинала |
Iliukhin, A.N. Improvement of 'winner takes all' neural network training for the purpose of diesel engine fault clustering/Iliukhin, A.N., Gibadullin, R.A.//2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings
7911587 |
Аннотация |
2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings |
Ключевые слова |
Clustering algorithms; Engines; Faulting; Manufacture; Neural networks; Personnel training; Plasma diagnostics; Testing
Automated test systems; Computing devices; Diagnostic systems; diesel; Knowledge database; Modified neural networks; Network structures; Neural network training |
Название журнала |
2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings
|
URL |
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7911587 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=157863 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Илюхин Алексей Николаевич |
ru_RU |
dc.contributor.author |
Гибадуллин Руслан Артурович |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Iliukhin, A.N. Improvement of 'winner takes all' neural network training for the purpose of diesel engine fault clustering/Iliukhin, A.N., Gibadullin, R.A.//2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings
7911587 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=157863 |
ru_RU |
dc.description.abstract |
2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings |
ru_RU |
dc.description.abstract |
To create a diagnostic system for diesel engines, it is necessary to analyze a huge amount of data obtained from the automated test systems for diesel engines. Therefore, it is worth to implement the analysis with the help of an artificial neural network. The application of the artificial neural network for diesel engine fault clustering allows reducing the amount of stored data by creation of a knowledge database for the weighting factors. Self-training makes it possible to revise this database, improving the accuracy of clustering, and to modify network structure, in case the new types of faults will appear. The modified neural network training algorithm involves the usage of input vector data originally found within each cluster group as the initial weighting factors. This algorithm allows decreasing the load on the computing devices by reducing the number of training cycles in comparison with other existing algorithms. The efficiency of the method can be improved with a larger numb |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
|
ru_RU |
dc.title |
Improvement of 'winner takes all' neural network training for the purpose of diesel engine fault clustering |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|