Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
EXPERIENCE IN EVALUATION OF ECOSYSTEM SERVICES BASED ON SPECIES DIVERSITY AND ECOSYSTEM PRODUCTIVITY OF PROTECTED RAIFA FOREST ECOSYSTEMS
Форма представленияТезисы и материалы конференций в зарубежных журналах и сборниках
Год публикации2017
  • Рогова Татьяна Владимировна, автор
  • Сауткин Илья Сергеевич, автор
  • Библиографическое описание на языке оригинала Sautkin I. S., Rogova T. V. Experience in evaluation of ecosystem services based on species diversity and ecosystem productivity of protected Raifa forest ecosystems // Vegetation patterns in natural and cultural landscapes: The 60th IAVS annual Symposium (June 20-24, 2017) / University of Palermo. - Palermo, 2017. P.308.
    Аннотация The research is devoted to the practical experience in ecosystem services (ES) valuation based on using indicators of species diversity and primary production by the example of forest ecosystems of Volga-Kama State Nature Biosphere Reserve (Russia). In the research were used 295 vegetation-plots from Vegetation Database of Tatarstan GIVD ID EU-RU-011 and forest inventory taxation data of Raifa forestry on the territory of the reserve. Assessment of biodiversity composition and primary production were carried out for each of the three forest formations with dominance of Pinus sylvestris, Betula pendula and Tilia cordata. For ES costs assessment, together with primary production were used data of species diversity and eco-cenotic species composition of evaluated ecosystems. For more accurate estimates we propose a method for determining the correction coefficient based on the presence of vascular plants.The use of the correction factor has allowed to obtain more accurate values of ES.
    Ключевые слова ecosystem services, biodiversity, Raifa forestry
    Место издания Палермо
    Издательство Palermo University Press
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=161022

    Полная запись метаданных