Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2016 |
Язык | английский |
|
Бочкарев Владимир Владимирович, автор
|
Библиографическое описание на языке оригинала |
Bochkarev V.V, Belashova I.A., Modelling of nonlinear filtering Poisson time series//Journal of Physics: Conference Series. - 2016. - Vol.738, Is.1. - Art. № 012082. |
Аннотация |
In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when the values of a time series have a normal distribution. However, if the distribution is not normal, good results can be expected using the maximum likelihood estimations. The filtration is studied according to the criterion of maximum likelihood by the example of Poisson time series. For direct optimisation of the likelihood function, different stochastic (genetic algorithms, annealing method) and deterministic optimization algorithms are used. |
Ключевые слова |
nonlinear filtering, Poisson's distribution, maximul likelihood estimation |
Название журнала |
Journal of Physics: Conference Series
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988692831&partnerID=40&md5=250cec49edf11d7490a9b4103cffb304 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=166638 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бочкарев Владимир Владимирович |
ru_RU |
dc.date.accessioned |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2016-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2016 |
ru_RU |
dc.identifier.citation |
Bochkarev V.V, Belashova I.A., Modelling of nonlinear filtering Poisson time series//Journal of Physics: Conference Series. - 2016. - Vol.738, Is.1. - Art. № 012082. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=166638 |
ru_RU |
dc.description.abstract |
Journal of Physics: Conference Series |
ru_RU |
dc.description.abstract |
In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when the values of a time series have a normal distribution. However, if the distribution is not normal, good results can be expected using the maximum likelihood estimations. The filtration is studied according to the criterion of maximum likelihood by the example of Poisson time series. For direct optimisation of the likelihood function, different stochastic (genetic algorithms, annealing method) and deterministic optimization algorithms are used. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
nonlinear filtering |
ru_RU |
dc.subject |
Poisson's distribution |
ru_RU |
dc.subject |
maximul likelihood estimation |
ru_RU |
dc.title |
Modelling of nonlinear filtering Poisson time series |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|