Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Хадиев Камиль Равилевич, автор
Хадиева Алия Ихсановна, автор
|
|
Кноп Александр , автор
|
Библиографическое описание на языке оригинала |
Kamil Khadiev, Aliya Khadiev, Alexander Knop, Exponential Separation between Quantum and Classical Ordered Binary Decision Diagrams, Reordering Method and Hierarchies, In Electronic Colloquium on Computational Complexity, TR17-176, PP. 1-15 , 2017 |
Аннотация |
n this paper, we study quantum OBDD model, it is a restricted version of read-once quantum branching programs, with respect to «width« complexity. It is known that the maximal gap between deterministic and quantum complexities is exponential. But there are few examples of functions with such a gap. We present a method (called «reordering«), which allows us to transform a Boolean function f into a Boolean function f, such that if for f we have some gap
between quantum and deterministic OBDD complexities for the natural order over the variables of f, then for any order we have almost the same gap for the function f. Using this transformation, we construct a total function REQ such that the deterministic OBDD complexity of it is at least 2(nlogn) , and the quantum OBDD complexity of it is at most O(n2). It is the biggest known gap for explicit functions not representable by OBDDs of a linear width. We also prove the quantum OBDD width hierarchy for complexity classes of Boolean functions. |
Ключевые слова |
branching programs, hierarchy theorems, OBDD, quantum computing, quantum vs classical |
Название журнала |
Electronic Colloquium on Computational Complexity
|
URL |
https://eccc.weizmann.ac.il/report/2017/176/ |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=168984 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Хадиев Камиль Равилевич |
ru_RU |
dc.contributor.author |
Хадиева Алия Ихсановна |
ru_RU |
dc.contributor.author |
Кноп Александр |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Kamil Khadiev, Aliya Khadiev, Alexander Knop, Exponential Separation between Quantum and Classical Ordered Binary Decision Diagrams, Reordering Method and Hierarchies, In Electronic Colloquium on Computational Complexity, TR17-176, PP. 1-15 , 2017 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=168984 |
ru_RU |
dc.description.abstract |
Electronic Colloquium on Computational Complexity |
ru_RU |
dc.description.abstract |
n this paper, we study quantum OBDD model, it is a restricted version of read-once quantum branching programs, with respect to «width« complexity. It is known that the maximal gap between deterministic and quantum complexities is exponential. But there are few examples of functions with such a gap. We present a method (called «reordering«), which allows us to transform a Boolean function f into a Boolean function f, such that if for f we have some gap
between quantum and deterministic OBDD complexities for the natural order over the variables of f, then for any order we have almost the same gap for the function f. Using this transformation, we construct a total function REQ such that the deterministic OBDD complexity of it is at least 2(nlogn) , and the quantum OBDD complexity of it is at most O(n2). It is the biggest known gap for explicit functions not representable by OBDDs of a linear width. We also prove the quantum OBDD width hierarchy for complexity classes of Boolean functions. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
branching programs |
ru_RU |
dc.subject |
hierarchy theorems |
ru_RU |
dc.subject |
OBDD |
ru_RU |
dc.subject |
quantum computing |
ru_RU |
dc.subject |
quantum vs classical |
ru_RU |
dc.title |
Exponential Separation between Quantum and Classical Ordered Binary Decision Diagrams, Reordering Method and Hierarchies |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|