Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Бочкарев Владимир Владимирович, автор
Лернер Эдуард Юльевич, автор
|
|
Никифоров Антон Александрович, автор
Письменский Александр Александрович, автор
|
Библиографическое описание на языке оригинала |
V.V. Bochkarev, E.Yu. Lerner, A.A. Nikiforov, A.A. Pismenskiy. Finding exact constants in a Markov model of Zipfs law generation // 2017 J. Phys.: Conf. Ser. 936 012028 |
Аннотация |
According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent −1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International
Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. Combinatorial technique allowed taking into account all the words with probability of more than $e^{-300}$ in case of 2 by 2 of transition probability matrix. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row with weights presenting the elements of presenting the elements of the vector $\pi$ of the stationary distribution of the Markov chain. |
Ключевые слова |
Zipfs law, power law constants, Markov chain, transition probability matrix, conditional entropy, stationary distribution |
Название журнала |
Journal of Physics: Conference Series
|
URL |
http://iopscience.iop.org/article/10.1088/1742-6596/936/1/012028/pdf |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=173627 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бочкарев Владимир Владимирович |
ru_RU |
dc.contributor.author |
Лернер Эдуард Юльевич |
ru_RU |
dc.contributor.author |
Никифоров Антон Александрович |
ru_RU |
dc.contributor.author |
Письменский Александр Александрович |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
V.V. Bochkarev, E.Yu. Lerner, A.A. Nikiforov, A.A. Pismenskiy. Finding exact constants in a Markov model of Zipfs law generation // 2017 J. Phys.: Conf. Ser. 936 012028 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=173627 |
ru_RU |
dc.description.abstract |
Journal of Physics: Conference Series |
ru_RU |
dc.description.abstract |
According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent −1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International
Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. Combinatorial technique allowed taking into account all the words with probability of more than $e^{-300}$ in case of 2 by 2 of transition probability matrix. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row with weights presenting the elements of presenting the elements of the vector $\pi$ of the stationary distribution of the Markov chain. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Zipfs law |
ru_RU |
dc.subject |
power law constants |
ru_RU |
dc.subject |
Markov chain |
ru_RU |
dc.subject |
transition probability matrix |
ru_RU |
dc.subject |
conditional entropy |
ru_RU |
dc.subject |
stationary distribution |
ru_RU |
dc.title |
Finding exact constants in a Markov model of Zipfs law generation |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|