Форма представления | Тезисы и материалы конференций в российских журналах и сборниках |
Год публикации | 2018 |
Язык | английский |
|
Халиуллин Самигулла Гарифуллович, автор
|
Библиографическое описание на языке оригинала |
Khaliullin S.G., Representations on an ultraproduct of von Neumann algebras // Internat. sci. confer. «Infinite-dimensional analysis and control theory« dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018), p. 8. |
Аннотация |
Internat. sci. confer. ?Infinite-dimensional analysis and control theory? dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin |
Ключевые слова |
Representations, ultraproduct, von Neumann algebra |
Название журнала |
Internat. sci. confer. ?Infinite-dimensional analysis and control theory? dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=174013 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Халиуллин Самигулла Гарифуллович |
ru_RU |
dc.date.accessioned |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2018 |
ru_RU |
dc.identifier.citation |
Khaliullin S.G., Representations on an ultraproduct of von Neumann algebras // Internat. sci. confer. «Infinite-dimensional analysis and control theory« dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018), p. 8. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=174013 |
ru_RU |
dc.description.abstract |
Internat. sci. confer. ?Infinite-dimensional analysis and control theory? dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin |
ru_RU |
dc.description.abstract |
The purpose of this report is to observe ultraproducts in general and ultraproduct of von Neumann algebras in particular. Since it does not seem to be well-known that there are various notions of ultraproducts, let us start with historical point of view.
We will note that the classical ultraproduct of von Neumann algebras, generally speaking, isn't von Neumann algebra. We introduce the concept of ergodic state with respect to a group of $^\ast$-automorphisms on an von Neumann algebra and its properties are studied. Also representations of von Neumann are considered. In particular, we have the example showing that the ultraproduct of irreducibles representations isn't, generally speaking, irreducible. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Representations |
ru_RU |
dc.subject |
ultraproduct |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.title |
Representations on an ultraproduct of von Neumann algebras |
ru_RU |
dc.type |
Тезисы и материалы конференций в российских журналах и сборниках |
ru_RU |
|