Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2018 |
Язык | английский |
|
Зубков Максим Витальевич, автор
|
Библиографическое описание на языке оригинала |
Wu G, Zubkov M., The Kierstead's Conjecture and limitwise monotonic functions//Annals of Pure and Applied Logic. - 2018. - Vol.169, Is. 6. - p.467-486 . |
Аннотация |
Annals of Pure and Applied Logic |
Ключевые слова |
linear order, limitwise monotonic function, automorphism |
Название журнала |
Annals of Pure and Applied Logic
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041502152&doi=10.1016%2fj.apal.2018.01.003&partnerID=40&md5=591cee0e811b1e158850be230b28a791 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=176184 |
Полная запись метаданных  |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Зубков Максим Витальевич |
ru_RU |
dc.date.accessioned |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2018 |
ru_RU |
dc.identifier.citation |
Wu G, Zubkov M., The Kierstead's Conjecture and limitwise monotonic functions//Annals of Pure and Applied Logic. - 2018. - Vol.169, Is. 6. - p.467-486 . |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=176184 |
ru_RU |
dc.description.abstract |
Annals of Pure and Applied Logic |
ru_RU |
dc.description.abstract |
Annals of Pure and Applied Logic |
ru_RU |
dc.description.abstract |
In this paper, we prove Kierstead's conjecture for linear orders
whose order types are $\sum\limits_{q\in\mathds{Q}}F(q)$, where
$F$ is an extended $0'$-limitwise monotonic function, i.e. $F$ can
take value $\zeta$. Linear orders in our consideration can have
finite and infinite blocks simultaneously, and in this sense our
result subsumes a recent result of C. Harris, K. Lee and S.\,B.
Cooper, where only those linear orders with finite blocks are
considered. Our result also covers one case of R. Downey and M.
Moses' work, i.e. $\zeta\cdot\eta$. It covers some instances not
being considered in both previous works mentioned above, such as
$m\cdot\eta+\zeta\cdot\eta+n\cdot\eta$, for example, where $m,
n>0$. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
linear order |
ru_RU |
dc.subject |
limitwise monotonic function |
ru_RU |
dc.subject |
automorphism |
ru_RU |
dc.title |
The Kierstead's Conjecture and limitwise monotonic functions |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|