Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2019 |
Язык | английский |
|
Обносов Юрий Викторович, автор
|
|
Зулькарняев Айрат Ринатович, автор
|
Библиографическое описание на языке оригинала |
Obnosov Yurii, Zulkarnyaev Airat. Nonlinear mixed Cherepanov boundary value problem. Complex Variables and Elliptic Equations. V.64(6) 2019,p.979-996. DOI:10.1080/17476933.2018.1493465 |
Аннотация |
We consider the nonlinear boundary-value problem, consisting in the determination of the function $w(z)$ which is meromorphic in the upper half-plane, satisfies the homogeneous Hilbert boundary condition on the set $L$ of $n$ intervals of the real axis, and has the given modulus on the set $M={\mathbb R}\setminus \overline L$. This problem was set and solved in \cite{cherepanov1}. G.P.Cherepanov proved that the required solution with a given number and location of its internal zeros and poles and with integrable singularities at all endpoints of $L$ exists if and only if $n-1$ solvability conditions are fulfilled. Our goal is to prove that this problem is unconditionally solvable in the class of meromorphic functions with properly chosen number and location of their zeros and poles. We show that the formulated problem is equivalent to the real analog of the Jacobi inversion problem on a hyperelliptic Riemann surface. The general meromorphic solution is obtained as well as the solut |
Ключевые слова |
nonlinear mixed boundary-value problem, analytic functions, closed form solution |
Название журнала |
Complex Variables and Elliptic Equations
|
URL |
http://10.1080/17476933.2018.1493465 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=184241 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.contributor.author |
Зулькарняев Айрат Ринатович |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Obnosov Yurii, Zulkarnyaev Airat. Nonlinear mixed Cherepanov boundary value problem. Complex Variables and Elliptic Equations. V.64(6) 2019,p.979-996. DOI:10.1080/17476933.2018.1493465 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=184241 |
ru_RU |
dc.description.abstract |
Complex Variables and Elliptic Equations |
ru_RU |
dc.description.abstract |
We consider the nonlinear boundary-value problem, consisting in the determination of the function $w(z)$ which is meromorphic in the upper half-plane, satisfies the homogeneous Hilbert boundary condition on the set $L$ of $n$ intervals of the real axis, and has the given modulus on the set $M={\mathbb R}\setminus \overline L$. This problem was set and solved in \cite{cherepanov1}. G.P.Cherepanov proved that the required solution with a given number and location of its internal zeros and poles and with integrable singularities at all endpoints of $L$ exists if and only if $n-1$ solvability conditions are fulfilled. Our goal is to prove that this problem is unconditionally solvable in the class of meromorphic functions with properly chosen number and location of their zeros and poles. We show that the formulated problem is equivalent to the real analog of the Jacobi inversion problem on a hyperelliptic Riemann surface. The general meromorphic solution is obtained as well as the solut |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
nonlinear mixed boundary-value problem |
ru_RU |
dc.subject |
analytic functions |
ru_RU |
dc.subject |
closed form solution |
ru_RU |
dc.title |
Nonlinear mixed Cherepanov boundary value problem |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|