Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
AN APPROACH TO REDUCING COMPLEXITY OF NEUROMORPHIC FAULT DICTIONARY CONSTRUCTION FOR ANALOGUE INTEGRATED CIRCUITS
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2018
Языканглийский
  • Мосин Сергей Геннадьевич, автор
  • Библиографическое описание на языке оригинала Mosin S., An approach to reducing complexity of neuromorphic fault dictionary construction for analogue integrated circuits//2018 28th International Conference Radioelektronika, RADIOELEKTRONIKA 2018. - 2018. - Vol., Is.. - P.1-6.
    Аннотация This paper is mainly focused on the reducing a complexity of fault dictionary constructing for analog integrated circuits based on neural network. The benefits of fault dictionary based on neural network (NN) such as associative operating mode and small influence of the number of considered faults on the NN architecture are presented. The problems of constructing the neuromorphic fault dictionary in the aspect of big data are discussed. The approach to selection the essential characteristics of controlled parameters during testing and fault diagnostics as well as to reduction of the training set dimension is proposed. The principal component analysis and criterion based on the explained residual variance are applied for reduction the number of coefficients used for the neural network training. The decomposition of design flow corresponding to the proposed approach is presented. The experimental results demonstrates efficiency as the time and computational cost reduction.
    Ключевые слова neuromorphic fault dictionary, principal component analysis, analog circuits, design-for-testability, testing and diagnostics
    Название журнала 2018 28th International Conference Radioelektronika, RADIOELEKTRONIKA 2018
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050003918&doi=10.1109%2fRADIOELEK.2018.8376404&partnerID=40&md5=9c3a5d68d412978f5b6ad12f1190dfbf
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=185201

    Полная запись метаданных