Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2018 |
Язык | английский |
|
Липачев Евгений Константинович, автор
|
Библиографическое описание на языке оригинала |
Lipachev E.K. Boundary-Value Problems for the Helmholtz Equation for a Half-Plane with a Lipschitz Inclusion / E.K.Lipachev // Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 5, pp. 698–705. https://doi.org/10.1134/S1995080218050104. |
Аннотация |
I consider the problems of diffraction of electromagnetic waves on a half-plane, which
has a finite inclusion in the form of a Lipschitz curve. Boundary value problems, modeling the process
of wave diffraction, are constructed in the form of Helmholtz equations and boundary conditions on
the boundary, formulated in terms of traces, as well as the radiation conditions at infinity. I carry out
research on these problems in generalized Sobolev spaces. I proved the solvability of the boundary
value problems of Dirichlet and Neumann. I have obtained solutions of boundary value problems
in the form of functions that by their properties are analogs of the classical potentials of single and
double layers. Boundary problems are reduced to integral equations of the second kind. |
Ключевые слова |
Lipschitz domains, Helmholtz equation, layer potentials, Dirichlet
problem, Neumann problem, Boundary Integral Equations. |
Название журнала |
Lobachevskii Journal of Mathematics
|
URL |
https://link.springer.com/article/10.1134%2FS1995080218050104 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=186617 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Липачев Евгений Константинович |
ru_RU |
dc.date.accessioned |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2018-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2018 |
ru_RU |
dc.identifier.citation |
Lipachev E.K. Boundary-Value Problems for the Helmholtz Equation for a Half-Plane with a Lipschitz Inclusion / E.K.Lipachev // Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 5, pp. 698–705. https://doi.org/10.1134/S1995080218050104. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=186617 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
I consider the problems of diffraction of electromagnetic waves on a half-plane, which
has a finite inclusion in the form of a Lipschitz curve. Boundary value problems, modeling the process
of wave diffraction, are constructed in the form of Helmholtz equations and boundary conditions on
the boundary, formulated in terms of traces, as well as the radiation conditions at infinity. I carry out
research on these problems in generalized Sobolev spaces. I proved the solvability of the boundary
value problems of Dirichlet and Neumann. I have obtained solutions of boundary value problems
in the form of functions that by their properties are analogs of the classical potentials of single and
double layers. Boundary problems are reduced to integral equations of the second kind. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Lipschitz domains |
ru_RU |
dc.subject |
Helmholtz equation |
ru_RU |
dc.subject |
layer potentials |
ru_RU |
dc.subject |
Dirichlet
problem |
ru_RU |
dc.subject |
Neumann problem |
ru_RU |
dc.subject |
Boundary Integral Equations. |
ru_RU |
dc.title |
Boundary-Value Problems for the Helmholtz Equation for a Half-Plane with a Lipschitz Inclusion |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|