Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
GUMEROV R., LIPACHEVA E., GRIGORYAN T., ON A TOPOLOGY AND LIMITS FOR INDUCTIVE SYSTEMS OF $C^*$-ALGEBRAS OVER PARTIALLY ORDERED SETS
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2018
Языканглийский
  • Гумеров Ренат Нельсонович, автор
  • Библиографическое описание на языке оригинала Gumerov R., Lipacheva E., Grigoryan T., On a topology and limits for inductive systems of $C^*$-algebras over partially ordered sets//http://arxiv.org/abs/1811.01234
    Аннотация Motivated by algebraic quantum field theory and our previous work we study properties of inductive systems of \ $C^*$-algebras over arbitrary partially ordered sets. A partially ordered set can be represented as the union of the family of its maximal upward directed subsets indexed by elements of a certain set. We consider a topology on the set of indices generated by a base of neighbourhoods. Examples of those topologies with different properties are given. An inductive system of $C^*$-algebras and its inductive limit arise naturally over each maximal upward directed subset. Using those inductive limits, we construct different types of $C^*$-algebras. In particular, for neighbourhoods of the topology on the set of indices we deal with the $C^*$-algebras which are the direct products of those inductive limits. The present paper is concerned with the above-mentioned topology and the algebras arising from an inductive system of $C^*$-algebras over a partially ordered set.
    Ключевые слова $C^*$-algebra, Inductive system
    Название журнала arXiv.org
    URL http://arxiv.org/abs/1811.01234
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=188062

    Полная запись метаданных