Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
MACHINE LEARNING AND DATA MINING METHODS IN TESTING AND DIAGNOSTICS OF ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS: CASE STUDY
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2019
Языканглийский
  • Мосин Сергей Геннадьевич, автор
  • Осин Юрий Николаевич, автор
  • Библиографическое описание на языке оригинала Mosin S., Machine learning and data mining methods in testing and diagnostics of analog and mixed-signal integrated circuits: Case study//Communications in Computer and Information Science. - 2019. - Vol.968, Is.. - P.240-255.
    Аннотация Artificial intelligence methods are widely used in different interdisciplinary areas. The paper is devoted to application the method of machine learning and data mining to construction a neuromorphic fault dictionary (NFD) for testing and fault diagnostics in analog/mixed-signal integrated circuits. The main issues of constructing a NFD from the big data point of view are considered. The method of reducing a set of essential characteristics based on the principal component analysis and approach to a cut down the training set using entropy estimation are proposed. The metrics used for estimating the classification quality are specified based on the confusion matrix. The case study results for analog filters are demonstrated and discussed. Experimental results for both cases demonstrate the essential reduction of initial training set and saving of time on the NFD training with high fault coverage up to 100 %.
    Ключевые слова Machine Learning, Data Mining, Testing, Diagnostics, Analog and Mixed-Signal IC, Entropy, Principal Component Analysis, Fault Coverage, Neuromorphic Fault Dictionary
    Название журнала Communications in Computer and Information Science
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059941032&doi=10.1007%2f978-981-13-5758-9_21&partnerID=40&md5=901ae3f2d300ad037b88584345d2fcec
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=195184

    Полная запись метаданных