Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2019 |
Язык | английский |
|
Магид Евгений Аркадьевич, автор
Сагитов Артур Газизович, автор
|
|
Сагитов Артур Газизович, автор
Сагитов Артур Газизович, автор
|
Библиографическое описание на языке оригинала |
Sagitov Artur, Takano Tetsuto, Muto Shohei, Magid Evgeni. Transfer of learned exploration strategies of a mobile robot from a simulated to real environments//ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS. - 2019. - Vol., Is.. - P.120-123. |
Аннотация |
Reinforcement learning based approaches show promises in various robotic applications, but a significant amount of time and resources are required for a robot to learn optimal behavior. Using virtual environments, we could significantly speed up and improve performance of a target task. We implemented a reinforcement learning based exploration algorithm for a mobile robot, training in Gazebo environment and transferring learned strategy to a real robot. We show that it is convenient and appropriate to use simulation to train strategies for mobile robots. |
Ключевые слова |
navigation; algorithm; mobile robots; reinforcement learning; exploration |
Название журнала |
ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=196702 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Магид Евгений Аркадьевич |
ru_RU |
dc.contributor.author |
Сагитов Артур Газизович |
ru_RU |
dc.contributor.author |
Сагитов Артур Газизович |
ru_RU |
dc.contributor.author |
Сагитов Артур Газизович |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Sagitov Artur, Takano Tetsuto, Muto Shohei, Magid Evgeni. Transfer of learned exploration strategies of a mobile robot from a simulated to real environments//ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS. - 2019. - Vol., Is.. - P.120-123. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=196702 |
ru_RU |
dc.description.abstract |
ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS |
ru_RU |
dc.description.abstract |
Reinforcement learning based approaches show promises in various robotic applications, but a significant amount of time and resources are required for a robot to learn optimal behavior. Using virtual environments, we could significantly speed up and improve performance of a target task. We implemented a reinforcement learning based exploration algorithm for a mobile robot, training in Gazebo environment and transferring learned strategy to a real robot. We show that it is convenient and appropriate to use simulation to train strategies for mobile robots. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
|
ru_RU |
dc.title |
Transfer of learned exploration strategies of a mobile robot from a simulated to real environments |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|