Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2019 |
Язык | английский |
|
Обносов Юрий Викторович, автор
|
Библиографическое описание на языке оригинала |
Obnosov Yu.V. Regular hexagonal three-phase checkerboard / Yu.V. Obnosov // Journal of Mathematical Analysis and Applications. - 2019. - DOI: 10.1016/j.jmaa.2019.06.007 |
Аннотация |
Two-dimensional doubly-periodic, three-phase hexagonal structure is considered. The flow in the structure is generated by three sets of vortexes/sinks/sources, which are the same in each phase and are located in the centers of the hexagons. Complex analyses methods are utilized to reduce the doubly periodic R-linear conjugation problem to the simpler one, Riemann-Hilbert (RH) problem, on a three-sheeted Riemann surface. In turn, the latter problem is reduced to a RH problem involving three joined sectors on the plane, which was previously investigated in \cite{cras_obn2004}. The limiting cases with one non-conducting phase and two phases of the same conductivities are investigated.
All solutions derived are verified both numerically and analytically. Examples of relevant flow networks, streamlines and equipotentials, are plotted in the whole structure and separately in each phase.
|
Ключевые слова |
Composite materials, doubly periodic structure, complex analysis, piece-wise meromorphic solution, conformal mapping |
Название журнала |
Journal of Mathematical Analysis and Applications
|
Ссылка для РПД |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/150897/F__exagon.pdf?sequence=1&isAllowed=y
|
URL |
https://doi.org/10.1016/j.jmaa.2019.06.007 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=203421 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Обносов Юрий Викторович |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Obnosov Yu.V. Regular hexagonal three-phase checkerboard / Yu.V. Obnosov // Journal of Mathematical Analysis and Applications. - 2019. - DOI: 10.1016/j.jmaa.2019.06.007 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=203421 |
ru_RU |
dc.description.abstract |
Journal of Mathematical Analysis and Applications |
ru_RU |
dc.description.abstract |
Two-dimensional doubly-periodic, three-phase hexagonal structure is considered. The flow in the structure is generated by three sets of vortexes/sinks/sources, which are the same in each phase and are located in the centers of the hexagons. Complex analyses methods are utilized to reduce the doubly periodic R-linear conjugation problem to the simpler one, Riemann-Hilbert (RH) problem, on a three-sheeted Riemann surface. In turn, the latter problem is reduced to a RH problem involving three joined sectors on the plane, which was previously investigated in \cite{cras_obn2004}. The limiting cases with one non-conducting phase and two phases of the same conductivities are investigated.
All solutions derived are verified both numerically and analytically. Examples of relevant flow networks, streamlines and equipotentials, are plotted in the whole structure and separately in each phase.
|
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Composite materials |
ru_RU |
dc.subject |
doubly periodic structure |
ru_RU |
dc.subject |
complex analysis |
ru_RU |
dc.subject |
piece-wise meromorphic solution |
ru_RU |
dc.subject |
conformal mapping |
ru_RU |
dc.title |
Regular hexagonal three-phase checkerboard |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|