Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2019 |
Язык | английский |
|
Коннов Игорь Васильевич, автор
Пинягина Ольга Владиславовна, автор
|
Библиографическое описание на языке оригинала |
Konnov I, Pinyagina O., Splitting method with adaptive step-size//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2019. - Vol.11548 LNCS, Is.. - P.46-58. |
Аннотация |
We suggest the modified splitting method for mixed variational inequalities and prove its convergence under rather mild assumptions. This method maintains the basic convergence properties but does not require any iterative step-size search procedure. It involves a simple adaptive step-size choice, which takes into account the problem behavior along the iterative sequence. The key element of this approach is a given majorant step-size sequence converging to zero. The next decreased value of step-size is taken only when the current iterate does not give a sufficient descent of the objective function. This descent value is estimated with the help of an Armijo-type condition, similar to the rule used in the inexact step-size linesearch. If the current iterate gives a sufficient descent, we can even take an increasing step-size value at the next iterate. Preliminary results of computational experiments confirm the efficiency of the proposed modification in comparison with the ordinary splitting method using the inexact step-size linesearch procedure. |
Ключевые слова |
Splitting method, Forward-backward method, Adaptive step-size choice, Mixed variational inequality, Nonsmooth optimization problem |
Название журнала |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
|
URL |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067660860&doi=10.1007%2f978-3-030-22629-9_4&partnerID=40&md5=2fb7c6f6e4e993cb01eebd54fd3330f2 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=205938 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Коннов Игорь Васильевич |
ru_RU |
dc.contributor.author |
Пинягина Ольга Владиславовна |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Konnov I, Pinyagina O., Splitting method with adaptive step-size//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2019. - Vol.11548 LNCS, Is.. - P.46-58. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=205938 |
ru_RU |
dc.description.abstract |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
ru_RU |
dc.description.abstract |
We suggest the modified splitting method for mixed variational inequalities and prove its convergence under rather mild assumptions. This method maintains the basic convergence properties but does not require any iterative step-size search procedure. It involves a simple adaptive step-size choice, which takes into account the problem behavior along the iterative sequence. The key element of this approach is a given majorant step-size sequence converging to zero. The next decreased value of step-size is taken only when the current iterate does not give a sufficient descent of the objective function. This descent value is estimated with the help of an Armijo-type condition, similar to the rule used in the inexact step-size linesearch. If the current iterate gives a sufficient descent, we can even take an increasing step-size value at the next iterate. Preliminary results of computational experiments confirm the efficiency of the proposed modification in comparison with the ordinary splitting method using the inexact step-size linesearch procedure. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Splitting method |
ru_RU |
dc.subject |
Forward-backward method |
ru_RU |
dc.subject |
Adaptive step-size choice |
ru_RU |
dc.subject |
Mixed variational inequality |
ru_RU |
dc.subject |
Nonsmooth optimization problem |
ru_RU |
dc.title |
Splitting method with adaptive step-size |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|