Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2019 |
Язык | английский |
|
Бикчентаев Айрат Мидхатович, автор
|
Библиографическое описание на языке оригинала |
Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450–1454. |
Аннотация |
Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈M^u then V ∈M^u. Let M
be a factor with a faithful normal trace τ on it. If
V ∈M^{is} an isometry (or a coisometry) and U − V
is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. |
Ключевые слова |
Hilbert space, linear operator, isometry, unitary operator, idempotent, tripotent, projection, compact operator, von Neumann algebra, trace, rearrangement |
Название журнала |
Lobachevskii Journal of Mathematics
|
Ссылка для РПД |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/151916/LOJM1450.pdf?sequence=1&isAllowed=y
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=210041 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчентаев Айрат Мидхатович |
ru_RU |
dc.date.accessioned |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2019-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2019 |
ru_RU |
dc.identifier.citation |
Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450–1454. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=210041 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U − V is τ-compact for some U ∈M^u then V ∈M^u. Let M
be a factor with a faithful normal trace τ on it. If
V ∈M^{is} an isometry (or a coisometry) and U − V
is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
isometry |
ru_RU |
dc.subject |
unitary operator |
ru_RU |
dc.subject |
idempotent |
ru_RU |
dc.subject |
tripotent |
ru_RU |
dc.subject |
projection |
ru_RU |
dc.subject |
compact operator |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.subject |
rearrangement |
ru_RU |
dc.title |
Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|