Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
NEURAL NETWORKS WITH PSEUDO-RANDOM DISTRIBUTION OF RELATIONSHIPS USING THE EXAMPLE OF MERCURY ELECTROLYZER OPERATION MODE MODELING
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2019
Языканглийский
  • Медведева Ольга Анатолиевна, автор
  • Библиографическое описание на языке оригинала Medvedeva Olga Anatolievna, Ivanov Aleksandr Nikolaevich, Morozkin Nikolay Danilovich, Svetlana Anatol'evna Mustafina. NEURAL NETWORKS WITH PSEUDO-RANDOM DISTRIBUTION OF RELATIONSHIPS USING THE EXAMPLE OF MERCURY ELECTROLYZER OPERATION MODE MODELING // INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES. - 2019. - Vol.10, Is.16. - Art. №10A16A.
    Аннотация This article analyzed the applicability of artificial neural networks to solve the problems of physicochemical process modeling using the example of the mercury electrolyzer operation mode used in caustic soda production. This paper also described the basic qualities of the existing neural networks and the ways of their training. The authors propose the solution to the problem of modeling based on the networks with pseudo-random distribution of connections. This paper described the architecture of these networks, three learning algorithms are proposed. The implementation of neural networks with pseudo-random distribution of connections was performed by Python programming language. The article presents the comparative learning results of different networks with different sets of hyperparameters. Also, the determination of the optimal settings of neural networks allows achieving high learning efficiency. The resulting neural network model described the electrolysis process adequately in accordance with the available source data.
    Ключевые слова Neural networks Modeling, Machine learning, Hyperparameters, Electrolysis, Pseudorandom distribution of connections.
    Название журнала INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES
    URL http://tuengr.com/V10A/10A16A.pdf
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=216273

    Полная запись метаданных