Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2020 |
Язык | русский |
|
Гафаров Фаиль Мубаракович, автор
Ситдикова Фарида Бизяновна, автор
|
|
Ахметгалиев Айнур Исламович, автор
|
Библиографическое описание на языке оригинала |
A.I. Akhmetgaliev, F.M.Gafarov, F.B.Sitdikova. Solving the Problem of Sentiment Analysis Using Neural Network Models. // International Journal of Pharmaceutical Research, Jan - March 2020, Vol 12, Issue 1, pp. 850-855. ISSN-0975-2366 |
Аннотация |
The article considers methods that create a vector representation of words in the n-dimensional vector space
in order to solving the problem of sentiment analysis based on neural network models of natural language
processing . The methods are based on «Word2Vec«, «GloVe«, «FastText« technology. Approaches are used in
the tasks of classification, sentiment analysis, typo correction, recommendation systems. We present the
results of classifications comparison in the problem of sentiment analysis of a multilayer perceptron, a
convolutional and recurrent neural network, decision trees (random forest), support vector machine (SVM),
naive Bayes classifier (NB), and k-nearest neighbors (K-NN). The results of the classification are presented for
three data sets: Twitter messages, reviews of various goods and services, Russian-language news.
|
Ключевые слова |
sentiment analysis, Word2Vec, GloVe, FastText, vector word representation, recurrent neural
networks, convolutional neural networks |
Название журнала |
International Journal of Pharmaceutical Research
|
URL |
https://doi.org/10.31838/ijpr/2020.12.01.162 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=221637 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Гафаров Фаиль Мубаракович |
ru_RU |
dc.contributor.author |
Ситдикова Фарида Бизяновна |
ru_RU |
dc.contributor.author |
Ахметгалиев Айнур Исламович |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
A.I. Akhmetgaliev, F.M.Gafarov, F.B.Sitdikova. Solving the Problem of Sentiment Analysis Using Neural Network Models. // International Journal of Pharmaceutical Research, Jan - March 2020, Vol 12, Issue 1, pp. 850-855. ISSN-0975-2366 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=221637 |
ru_RU |
dc.description.abstract |
International Journal of Pharmaceutical Research |
ru_RU |
dc.description.abstract |
The article considers methods that create a vector representation of words in the n-dimensional vector space
in order to solving the problem of sentiment analysis based on neural network models of natural language
processing . The methods are based on «Word2Vec«, «GloVe«, «FastText« technology. Approaches are used in
the tasks of classification, sentiment analysis, typo correction, recommendation systems. We present the
results of classifications comparison in the problem of sentiment analysis of a multilayer perceptron, a
convolutional and recurrent neural network, decision trees (random forest), support vector machine (SVM),
naive Bayes classifier (NB), and k-nearest neighbors (K-NN). The results of the classification are presented for
three data sets: Twitter messages, reviews of various goods and services, Russian-language news.
|
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
sentiment analysis |
ru_RU |
dc.subject |
Word2Vec |
ru_RU |
dc.subject |
GloVe |
ru_RU |
dc.subject |
FastText |
ru_RU |
dc.subject |
vector word representation |
ru_RU |
dc.subject |
recurrent neural
networks |
ru_RU |
dc.subject |
convolutional neural networks |
ru_RU |
dc.title |
Solving the Problem of Sentiment Analysis Using Neural Network Models. |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|