Форма представления | Тезисы и материалы конференций в российских журналах и сборниках |
Год публикации | 2020 |
|
Демьянов Дмитрий Николаевич, автор
|
|
Волков Василий Геннадьевич, автор
|
Библиографическое описание на языке оригинала |
V. Volkov and D. Demyanov, "Optimal Estimation of the Linear Functional of State Variables of a Dynamic System," 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), Samara, Russia, 2019, pp. 640-643. |
Аннотация |
The paper considers the problem of building an observer that ensures optimal estimation of the linear functional of state variables of a dynamic system. In addition, the degree of influence of unknown initial conditions on the integral error of observation in the absence of an external disturbance (the level of initial disturbance rejection in the system) acts as a minimized criterion. It is shown that when a number of constraints are fulfilled, an observer can be used to solve the problem posed, the order of which is equal to the order of the estimated functional. The conditions for the existence of such an observer is determined, the linear matrix inequalities, the solution of which allows one to determine its matrix coefficients are formulated. |
Ключевые слова |
dynamic system, state variables, linear functional, nonzero initial conditions, optimal estimation, matrix canonization, linear matrix inequalities |
Издательство |
IEEE |
URL |
https://ieeexplore.ieee.org/abstract/document/8976873/ |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=225220 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Демьянов Дмитрий Николаевич |
ru_RU |
dc.contributor.author |
Волков Василий Геннадьевич |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
V. Volkov and D. Demyanov, "Optimal Estimation of the Linear Functional of State Variables of a Dynamic System," 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), Samara, Russia, 2019, pp. 640-643. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=225220 |
ru_RU |
dc.description.abstract |
The paper considers the problem of building an observer that ensures optimal estimation of the linear functional of state variables of a dynamic system. In addition, the degree of influence of unknown initial conditions on the integral error of observation in the absence of an external disturbance (the level of initial disturbance rejection in the system) acts as a minimized criterion. It is shown that when a number of constraints are fulfilled, an observer can be used to solve the problem posed, the order of which is equal to the order of the estimated functional. The conditions for the existence of such an observer is determined, the linear matrix inequalities, the solution of which allows one to determine its matrix coefficients are formulated. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.publisher |
IEEE |
ru_RU |
dc.subject |
dynamic system |
ru_RU |
dc.subject |
state variables |
ru_RU |
dc.subject |
linear functional |
ru_RU |
dc.subject |
nonzero initial conditions |
ru_RU |
dc.subject |
optimal estimation |
ru_RU |
dc.subject |
matrix canonization |
ru_RU |
dc.subject |
linear matrix inequalities |
ru_RU |
dc.title |
Optimal Estimation of the Linear Functional of State Variables of a Dynamic System |
ru_RU |
dc.type |
Тезисы и материалы конференций в российских журналах и сборниках |
ru_RU |
|