Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2020 |
Язык | английский |
|
Бикчентаев Айрат Мидхатович, автор
|
Библиографическое описание на языке оригинала |
A. M. Bikchentaev, Invariant Subspaces of Operators on a Hilbert Space
// Lobachevskii Journal of Mathematics, 2020, Vol. 41, No. 4, pp. 610--613
|
Аннотация |
In year 2006 the author proposed an approach to the invariant subspace problem for
an operator on a Hilbert space, based on projection-convex combinations in C∗-algebras with the
unitary factorization property. In this paper, we present an operator inequality characterizing the
invariant subspace of such an operator. Eight corollaries are obtained. For an operator C*-algebra
A with a faithful trace, we give a sufficient condition of commutation for a partial isometry from A
with a projection onto its invariant subspace. |
Ключевые слова |
Hilbert space, linear operator, invariant subspace, operator inequality, commutativity, projection, partial isometry, C*-algebra, trace |
Название журнала |
Lobachevskii Journal of Mathematics
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=226712 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчентаев Айрат Мидхатович |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
A. M. Bikchentaev, Invariant Subspaces of Operators on a Hilbert Space
// Lobachevskii Journal of Mathematics, 2020, Vol. 41, No. 4, pp. 610--613
|
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=226712 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
In year 2006 the author proposed an approach to the invariant subspace problem for
an operator on a Hilbert space, based on projection-convex combinations in C∗-algebras with the
unitary factorization property. In this paper, we present an operator inequality characterizing the
invariant subspace of such an operator. Eight corollaries are obtained. For an operator C*-algebra
A with a faithful trace, we give a sufficient condition of commutation for a partial isometry from A
with a projection onto its invariant subspace. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
invariant subspace |
ru_RU |
dc.subject |
operator inequality |
ru_RU |
dc.subject |
commutativity |
ru_RU |
dc.subject |
projection |
ru_RU |
dc.subject |
partial isometry |
ru_RU |
dc.subject |
C*-algebra |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.title |
Invariant Subspaces of Operators on a Hilbert Space
|
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|