Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2020 |
Язык | английский |
|
Зайцева Наталья Владимировна, автор
|
Библиографическое описание на языке оригинала |
Zaitseva N.V. On global classical solutions of hyperbolic differential-difference equations // Doklady Mathematics. - 2020. - Vol. 101, no. 2. - P. 115-116. |
Аннотация |
A one-parameter family of global solutions of a two-dimensional hyperbolic differential-difference equation with an operator acting with respect to a space variable is constructed. A theorem is proved stating that the resulting solutions are classical for all parameter values if the symbol of the difference operator of the equation has a positive real part. Classes of equations for which this condition is satisfied are given. |
Ключевые слова |
hyperbolic equation, differential-difference equation |
Название журнала |
Doklady Mathematics
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=235806 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Зайцева Наталья Владимировна |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
Zaitseva N.V. On global classical solutions of hyperbolic differential-difference equations // Doklady Mathematics. - 2020. - Vol. 101, no. 2. - P. 115-116. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=235806 |
ru_RU |
dc.description.abstract |
Doklady Mathematics |
ru_RU |
dc.description.abstract |
A one-parameter family of global solutions of a two-dimensional hyperbolic differential-difference equation with an operator acting with respect to a space variable is constructed. A theorem is proved stating that the resulting solutions are classical for all parameter values if the symbol of the difference operator of the equation has a positive real part. Classes of equations for which this condition is satisfied are given. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
hyperbolic equation |
ru_RU |
dc.subject |
differential-difference equation |
ru_RU |
dc.title |
On global classical solutions of hyperbolic differential-difference equations |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|