Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
RSS Ins Вконтакте twitter facebook
HARDWARE AND SOFTWARE VIDEO ENCODING COMPARISON
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2020
Языканглийский
  • Лавренов Роман Олегович, автор
  • Магид Евгений Аркадьевич, автор
  • Сафин Рамиль Набиуллович, автор
  • Гарипова Эмилия Равилевна, автор
  • Библиографическое описание на языке оригинала Safin R., Garipova E., Lavrenov R., Li H., Svinin M., Magid E. Hardware and software video encoding comparison//2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020. - 2020. - Vol., Is.. - P.924-929.
    Аннотация Long time of data encoding with software encoding mechanisms might become a significant problem when transferring digital data from cameras of mobile robots. At the same time, processor manufacturers claim that an encoding process is significantly accelerated by using a hardware encoding. This work is dedicated to a hardware and a software video encoding comparison of two state-of-the-art codecs, which were selected due to their high popularity in computer vision and robotics fields - a hardware encoding with h264 vaapi and a software encoding with FFmpeg API libx265 codec. We encoded six video sequences of different resolutions and sizes with the two codecs and evaluated obtained video quality using the Structural Similarity Index, the Peak Signal-to-Noise ratio, and the Video Multimethod Assessment Fusion metrics. Software and hardware encoding processes were also compared by CPU and memory usage, and time that was taken by the encoding process. Our results demonstrated that the hardware encoding with h264 vaapi was 5 times more memory efficient and 6 times more time-efficient relatively to the software encoding with libx265, with an insignificant difference of an output video quality.
    Ключевые слова Computer vision, Robot vision, Video stream, Hardware encoding, Software encoding, Intel QuickSync, FFmpeg
    Название журнала 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020
    URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096361362&partnerID=40&md5=f8bf623503158867e789c1a9c7a91f48
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=242803
    Файлы ресурса 
    Название файла Размер (Мб) Формат  
    SICE_2020_final_ieee.pdf 0,43 pdf посмотреть / скачать

    Полная запись метаданных