Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
ON THE GRADED ALGEBRAS ASSOCIATED WITH HECKE SYMMETRIES
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2020
Языканглийский
  • Скрябин Сергей Маркович, автор
  • Библиографическое описание на языке оригинала Skryabin Serge, On the graded algebras associated with Hecke symmetries//JOURNAL OF NONCOMMUTATIVE GEOMETRY. - 2020. - Vol.14, Is.3. - P.937-986.
    Аннотация A Hecke symmetry $R$ on a finite dimensional vector space $V$ gives rise to two graded factor algebras $\bbS(V,R)$ and $\La(V,R)$ of the tensor algebra of $V$ which are regarded as quantum analogs of the symmetric and the exterior algebras. Another graded algebra associated with $R$ is the Faddeev-Reshetikhin-Takhtajan bialgebra $A(R)$ which coacts on $\bbS(V,R)$ and $\La(V,R)$. There are also more general graded algebras defined with respect to pairs of Hecke symmetries and interpreted in terms of quantum hom-spaces. Their nice behaviour has been known under the assumption that the parameter $q$ of the Hecke relation is such that $1+q+\ldots+q^{n-1}\ne0$ for all $n>0$. The present paper makes an attempt to investigate several questions without this condition on $q$. Particularly we are interested in Koszulness and Gorensteinness of those graded algebras. For $q$ a root of 1 positive results require a restriction on the indecomposable modules for the Hecke algebras of type $A$ that can occur as direct summands of epresentations in the tensor powers of $V$.
    Ключевые слова Hecke symmetries, graded algebras, Koszul algebras, Gorenstein algebras, quantum symmetric algebras, FRT bialgebras, quantum hom-spaces, quantum groups
    Название журнала JOURNAL OF NONCOMMUTATIVE GEOMETRY
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=244769

    Полная запись метаданных