Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2020 |
Язык | русский |
|
Баскин Игорь Иосифович, автор
Варнек Александр , автор
Гимадиев Тимур Рустемович, автор
Маджидов Тимур Исмаилович, автор
Нугманов Рамиль Ирекович, автор
|
|
Рахимбекова Асима , автор
|
Библиографическое описание на языке оригинала |
Rakhimbekova, A. Comprehensive analysis of applicability domains of QSPR models for chemical reactions / A. Rakhimbekova, T.I. Madzhidov, R.I. Nugmanov, T.R. Gimadiev, I.I. Baskin, A. Varnek // Int. J. Mol. Sci.-2020.-21(15)-pp.1-20. doi: 10.3390/ijms21155542. |
Аннотация |
Nowadays, the problem of the model?s applicability domain (AD) definition is an active research topic in chemoinformatics. Although many various AD definitions for the models predicting properties of molecules (Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) models) were described in the literature, no one for chemical reactions (Quantitative Reaction-Property Relationships (QRPR)) has been reported to date. The point is that a chemical reaction is a much more complex object than an individual molecule, and its yield, thermodynamic and kinetic characteristics depend not only on the structures of reactants and products but also on experimental conditions. The QRPR models? performance largely depends on the way that chemical transformation is encoded. In this study, various AD definition methods extensively used in QSAR/QSPR studies of individual molecules, as well as several novel approaches suggested in this work for reactions, were benchmarked on several reaction dat |
Ключевые слова |
Applicability domain, Chemical reactions, Chemoinformatics, Machine learning, QSAR/QSPR, Quantitative Reaction?Property Relationship Reaction mining |
Название журнала |
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=249811 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Баскин Игорь Иосифович |
ru_RU |
dc.contributor.author |
Варнек Александр |
ru_RU |
dc.contributor.author |
Гимадиев Тимур Рустемович |
ru_RU |
dc.contributor.author |
Маджидов Тимур Исмаилович |
ru_RU |
dc.contributor.author |
Нугманов Рамиль Ирекович |
ru_RU |
dc.contributor.author |
Рахимбекова Асима |
ru_RU |
dc.date.accessioned |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2020-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2020 |
ru_RU |
dc.identifier.citation |
Rakhimbekova, A. Comprehensive analysis of applicability domains of QSPR models for chemical reactions / A. Rakhimbekova, T.I. Madzhidov, R.I. Nugmanov, T.R. Gimadiev, I.I. Baskin, A. Varnek // Int. J. Mol. Sci.-2020.-21(15)-pp.1-20. doi: 10.3390/ijms21155542. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=249811 |
ru_RU |
dc.description.abstract |
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES |
ru_RU |
dc.description.abstract |
Nowadays, the problem of the model?s applicability domain (AD) definition is an active research topic in chemoinformatics. Although many various AD definitions for the models predicting properties of molecules (Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) models) were described in the literature, no one for chemical reactions (Quantitative Reaction-Property Relationships (QRPR)) has been reported to date. The point is that a chemical reaction is a much more complex object than an individual molecule, and its yield, thermodynamic and kinetic characteristics depend not only on the structures of reactants and products but also on experimental conditions. The QRPR models? performance largely depends on the way that chemical transformation is encoded. In this study, various AD definition methods extensively used in QSAR/QSPR studies of individual molecules, as well as several novel approaches suggested in this work for reactions, were benchmarked on several reaction dat |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Applicability domain |
ru_RU |
dc.subject |
Chemical reactions |
ru_RU |
dc.subject |
Chemoinformatics |
ru_RU |
dc.subject |
Machine learning |
ru_RU |
dc.subject |
QSAR/QSPR |
ru_RU |
dc.subject |
Quantitative Reaction?Property Relationship Reaction mining |
ru_RU |
dc.title |
Comprehensive analysis of applicability domains of QSPR models for chemical reactions |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|