Форма представления | Тезисы и материалы конференций в зарубежных журналах и сборниках |
Год публикации | 2021 |
Язык | английский |
|
Лавренов Роман Олегович, автор
Магид Евгений Аркадьевич, автор
|
Библиографическое описание на языке оригинала |
Carvajal I., Martinez-Garcia E.A., Lavrenov R., Magid E. Robot arm planning and control by τau-Jerk theory and a vision-based recurrent ANN observer // The 15th Siberian Conference on Control and Communications (SIBCON 2021) (Kazan, Russia; 13-15 May 2021) (online) - № 9438857. |
Аннотация |
2021 International Siberian Conference on Control and Communications (SIBCON) |
Ключевые слова |
Robotic-arm, assembling, model-based-control, tau-theory, vision, Hopfield-neurons, by-layer-ANN |
Название журнала |
2021 International Siberian Conference on Control and Communications (SIBCON)
|
URL |
https://ieeexplore.ieee.org/document/9438857 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=254374 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Лавренов Роман Олегович |
ru_RU |
dc.contributor.author |
Магид Евгений Аркадьевич |
ru_RU |
dc.date.accessioned |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2021 |
ru_RU |
dc.identifier.citation |
Carvajal I., Martinez-Garcia E.A., Lavrenov R., Magid E. Robot arm planning and control by τau-Jerk theory and a vision-based recurrent ANN observer // The 15th Siberian Conference on Control and Communications (SIBCON 2021) (Kazan, Russia; 13-15 May 2021) (online) - № 9438857. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=254374 |
ru_RU |
dc.description.abstract |
2021 International Siberian Conference on Control and Communications (SIBCON) |
ru_RU |
dc.description.abstract |
This work describes a planning path-tracking control for a 6-axis robot manipulator in palettes assembly. Two biologically inspired approaches motivated this work: the general tau-Jerk theory for trajectory tracking and a recurrent bi-layer Hopfield artificial neural network. Equidistant Cartesian points generate free-collision paths between the robot and the palette. Nonlinear regression-based 3rd grade polynomials represents polynomial assembling trajectories. A variational method optimizes paths length. The method is validated through numeric simulations, showing feasibility and effectiveness. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Robotic-arm |
ru_RU |
dc.subject |
assembling |
ru_RU |
dc.subject |
model-based-control |
ru_RU |
dc.subject |
tau-theory |
ru_RU |
dc.subject |
vision |
ru_RU |
dc.subject |
Hopfield-neurons |
ru_RU |
dc.subject |
by-layer-ANN |
ru_RU |
dc.title |
Robot arm planning and control by tau-Jerk theory and vision-based recurrent ANN observer |
ru_RU |
dc.type |
Тезисы и материалы конференций в зарубежных журналах и сборниках |
ru_RU |
|