Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2021 |
Язык | английский |
|
Бикчентаев Айрат Мидхатович, автор
|
Библиографическое описание на языке оригинала |
A. M. Bikchentaev, Trace inequalities for Rickart $C^*$-algebras // Positivity 25 (2021), no. 5, 1943--1957. |
Аннотация |
Rickart $C^*$-algebras are unital and satisfy polar decomposition.
We proved that if a unital $C^*$-algebra $\mathcal{A}$ satisfies polar decomposition and admits
``good'' faithful tracial states then $\mathcal{A}$ is
a Rickart $C^*$-algebra. Via polar decomposition we characteri\-zed tracial states among all
states on a Rickart $C^*$-algebra. We presented the triangle inequality for Hermitian elements and traces on Rickart
$C^*$-algebra.
For a block projection operator and a trace on a Rickart $C^*$-algebra we proved a new inequality. As a corollary,
we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection.
Also we give a characterization of traces in a wide class of weights on a von Neumann algebra.
|
Ключевые слова |
Hilbert space, polar decomposition, von Neumann algebra, $C^*$-algebra, weight, trace |
Название журнала |
POSITIVITY
|
URL |
https://doi.org/10.1007/s11117-021-00852-3 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=255300 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчентаев Айрат Мидхатович |
ru_RU |
dc.date.accessioned |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2021 |
ru_RU |
dc.identifier.citation |
A. M. Bikchentaev, Trace inequalities for Rickart $C^*$-algebras // Positivity 25 (2021), no. 5, 1943--1957. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=255300 |
ru_RU |
dc.description.abstract |
POSITIVITY |
ru_RU |
dc.description.abstract |
Rickart $C^*$-algebras are unital and satisfy polar decomposition.
We proved that if a unital $C^*$-algebra $\mathcal{A}$ satisfies polar decomposition and admits
``good'' faithful tracial states then $\mathcal{A}$ is
a Rickart $C^*$-algebra. Via polar decomposition we characteri\-zed tracial states among all
states on a Rickart $C^*$-algebra. We presented the triangle inequality for Hermitian elements and traces on Rickart
$C^*$-algebra.
For a block projection operator and a trace on a Rickart $C^*$-algebra we proved a new inequality. As a corollary,
we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection.
Also we give a characterization of traces in a wide class of weights on a von Neumann algebra.
|
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
polar decomposition |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.subject |
$C^*$-algebra |
ru_RU |
dc.subject |
weight |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.title |
Trace inequalities for Rickart $C^*$-algebras |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|