| Форма представления | Статьи в зарубежных журналах и сборниках | 
| Год публикации | 2021 | 
| Язык | английский | 
|  | Бикчентаев Айрат Мидхатович, автор | 
| Библиографическое описание на языке оригинала | A. M. Bikchentaev, Trace inequalities for  Rickart $C^*$-algebras //  Positivity 25 (2021), no. 5, 1943--1957. | 
| Аннотация | Rickart $C^*$-algebras are unital and satisfy polar decomposition. 
We proved that if a  unital  $C^*$-algebra $\mathcal{A}$ satisfies polar  decomposition and admits  
 ``good'' faithful tracial states then $\mathcal{A}$ is
 a  Rickart $C^*$-algebra. Via polar  decomposition we characteri\-zed tracial states among all 
states on a  Rickart $C^*$-algebra. We   presented the triangle inequality for Hermitian elements and traces on Rickart 
$C^*$-algebra.
For a block projection operator  and a trace on a Rickart $C^*$-algebra we proved  a new inequality. As a  corollary, 
 we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection. 
Also we give a characterization of traces in a wide class of weights on a von Neumann algebra. | 
| Ключевые слова | Hilbert space,  polar decomposition,  von Neumann algebra, $C^*$-algebra, weight, trace | 
| Название журнала | POSITIVITY | 
| URL | https://doi.org/10.1007/s11117-021-00852-3 | 
| Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку | https://repository.kpfu.ru/?p_id=255300 | 
| Файлы ресурса |  | 
|  | 
| Полная запись метаданных
  | 
| 
                                 
                                     | Поле DC | Значение | Язык |  | dc.contributor.author | Бикчентаев Айрат Мидхатович | ru_RU |  | dc.date.accessioned | 2021-01-01T00:00:00Z | ru_RU |  | dc.date.available | 2021-01-01T00:00:00Z | ru_RU |  | dc.date.issued | 2021 | ru_RU |  | dc.identifier.citation | A. M. Bikchentaev, Trace inequalities for  Rickart $C^*$-algebras //  Positivity 25 (2021), no. 5, 1943--1957. | ru_RU |  | dc.identifier.uri | https://repository.kpfu.ru/?p_id=255300 | ru_RU |  | dc.description.abstract | POSITIVITY | ru_RU |  | dc.description.abstract | Rickart $C^*$-algebras are unital and satisfy polar decomposition. 
We proved that if a  unital  $C^*$-algebra $\mathcal{A}$ satisfies polar  decomposition and admits  
 ``good'' faithful tracial states then $\mathcal{A}$ is
 a  Rickart $C^*$-algebra. Via polar  decomposition we characteri\-zed tracial states among all 
states on a  Rickart $C^*$-algebra. We   presented the triangle inequality for Hermitian elements and traces on Rickart 
$C^*$-algebra.
For a block projection operator  and a trace on a Rickart $C^*$-algebra we proved  a new inequality. As a  corollary, 
 we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection. 
Also we give a characterization of traces in a wide class of weights on a von Neumann algebra. | ru_RU |  | dc.language.iso | ru | ru_RU |  | dc.subject | Hilbert space | ru_RU |  | dc.subject | polar decomposition | ru_RU |  | dc.subject | von Neumann algebra | ru_RU |  | dc.subject | $C^*$-algebra | ru_RU |  | dc.subject | weight | ru_RU |  | dc.subject | trace | ru_RU |  | dc.title | Trace inequalities for  Rickart $C^*$-algebras | ru_RU |  | dc.type | Статьи в зарубежных журналах и сборниках | ru_RU |  |