Форма представления | Тезисы и материалы конференций в зарубежных журналах и сборниках |
Год публикации | 2017 |
Язык | английский |
|
Магид Евгений Аркадьевич, автор
|
Библиографическое описание на языке оригинала |
Martinez-Garcia E.A., Rodriguez N.A., Rodriguez-Jorge R., Mizera-Pietraszko J., Sheba J.K., Mohan R.E., Magid E. Non Linear Fitting Methods for Machine Learning // International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (Barcelona, Spain; 8-10 November 2017) - p. 807-818. |
Аннотация |
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing |
Ключевые слова |
Machine learning |
Название журнала |
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
|
URL |
https://link.springer.com/chapter/10.1007/978-3-319-69835-9_76 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=257543 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Магид Евгений Аркадьевич |
ru_RU |
dc.date.accessioned |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2017-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2017 |
ru_RU |
dc.identifier.citation |
Martinez-Garcia E.A., Rodriguez N.A., Rodriguez-Jorge R., Mizera-Pietraszko J., Sheba J.K., Mohan R.E., Magid E. Non Linear Fitting Methods for Machine Learning // International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (Barcelona, Spain; 8-10 November 2017) - p. 807-818. |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=257543 |
ru_RU |
dc.description.abstract |
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing |
ru_RU |
dc.description.abstract |
This manuscript presents an analysis of numerical fitting methods used for solving classification problems as discriminant functions in machine learning. Non linear polynomial, exponential, and trigonometric models are mathematically deduced and discussed. Analysis about their pros and cons, and their mathematical modelling are made on what method to chose for what type of highly non linear multidimension problems are more suitable to be solved. In this study only deterministic models with analytic solutions are involved, or parameters calculation by numeric methods, which the complete model can subsequently be treated as a theoretical model. Models deduction are summarised and presented as a survey. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
|
ru_RU |
dc.title |
Non Linear Fitting Methods for Machine Learning |
ru_RU |
dc.type |
Тезисы и материалы конференций в зарубежных журналах и сборниках |
ru_RU |
|