Казанский (Приволжский) федеральный университет, КФУ
КАЗАНСКИЙ
ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
 
ON THE GRADED ALGEBRAS ASSOCIATED WITH HECKE SYMMETRIES, II. THE HILBERT SERIES
Форма представленияСтатьи в зарубежных журналах и сборниках
Год публикации2022
Языканглийский
  • Скрябин Сергей Маркович, автор
  • Библиографическое описание на языке оригинала Skryabin Serge, On the graded algebras associated with Hecke symmetries, II. The Hilbert series//JOURNAL OF ALGEBRAIC COMBINATORICS. - 2022. - Vol. 56, P. 169-214.
    Аннотация Hecke symmetries give rise to a family of graded algebras which represent quantum groups and spaces of noncommutative geometry. The present paper continues the work aiming to understand general properties of these algebras without a restriction on the parameter $q$ of Hecke relation used in earlier results. However, if $q$ is a root of 1, we need a restriction on the indecomposable modules for the Hecke algebras of type $A$ that can occur as direct summands of representations in the tensor powers of the initial vector space $V$. In this setting we generalize known results on rationality of Hilbert series. The combinatorial nature of this problem stems from a relationship between the Grothendieck ring of the category of comodules for the Faddeev-Reshetikhin-Takhtajan bialgebra $A(R)$ associated with a Hecke symmetry $R$ and the ring of symmetric functions. We then improve two results on monoidal equivalences of corepresentation categories and on Gorensteinness of graded algebras from a previous article.
    Ключевые слова Hecke symmetries, graded algebras, Hilbert series
    Название журнала JOURNAL OF ALGEBRAIC COMBINATORICS
    URL https://rdcu.be/cFbQF
    Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку https://repository.kpfu.ru/?p_id=264024

    Полная запись метаданных