Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2021 |
Язык | английский |
|
Галиев Айдар Ахатович, автор
Карпов Аркадий Васильевич, автор
Сулимов Амир Ильдарович, автор
|
Библиографическое описание на языке оригинала |
Galiev A.A, Sulimov A.I, Karpov A.V., Experimental Study of Channel Frequency-Correlation in an Indoor Multipath Environment for Wireless Key Generation // Proceedings of the 2021 International Conference Engineering and Telecommunication (En&T). - 2021. - pp. 1-5. DOI: 10.1109/EnT50460.2021.9681779 |
Аннотация |
Channel randomness in wireless communication systems can be employed for generating two copies of a key bits sequence in a given pair of nodes. Among others, the differential phase method that uses phase samples of two coherent frequency tones for generating high-entropy key bits sequence seems to be a promising technique. Unfortunately, implementation of the differential phase method relies on correct specification of the frequency separation of the probing tones, which requires additional study of the frequency-correlation properties of the propagation medium. This paper is devoted to experimental study of the channel frequency-correlation properties in a typical indoor environment. Frequency autocorrelation functions are experimentally determined for the signal envelope and carrier phase on four different indoor radio links. The estimates of the channel coherence bandwidth and multipath delay spread are performed, and the influence of the line-of-sight component (LOS) is considered. Our experiments showed that, depending on the LOS intensity, the coherence bandwidth on typical indoor radio links of 20-meters length varies from 8 MHz to 25 MHz (for the correlation level of 0.2), whereas for samples of the carrier phase, the coherence bandwidth is somewhat narrower and varies from 6 MHz to 19 MHz. |
Ключевые слова |
Multipath propagation, indoor radio communication, channel estimation, frequency correlation, coherence bandwidth, multipath delay spread, differential phase |
Название журнала |
Proceedings of the 2021 International Conference Engineering and Telecommunication (En&T)
|
URL |
https://ieeexplore.ieee.org/document/9681779 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=264725 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Галиев Айдар Ахатович |
ru_RU |
dc.contributor.author |
Карпов Аркадий Васильевич |
ru_RU |
dc.contributor.author |
Сулимов Амир Ильдарович |
ru_RU |
dc.date.accessioned |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2021-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2021 |
ru_RU |
dc.identifier.citation |
Galiev A.A, Sulimov A.I, Karpov A.V., Experimental Study of Channel Frequency-Correlation in an Indoor Multipath Environment for Wireless Key Generation // Proceedings of the 2021 International Conference Engineering and Telecommunication (En&T). - 2021. - pp. 1-5. DOI: 10.1109/EnT50460.2021.9681779 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=264725 |
ru_RU |
dc.description.abstract |
Proceedings of the 2021 International Conference Engineering and Telecommunication (En&T) |
ru_RU |
dc.description.abstract |
Channel randomness in wireless communication systems can be employed for generating two copies of a key bits sequence in a given pair of nodes. Among others, the differential phase method that uses phase samples of two coherent frequency tones for generating high-entropy key bits sequence seems to be a promising technique. Unfortunately, implementation of the differential phase method relies on correct specification of the frequency separation of the probing tones, which requires additional study of the frequency-correlation properties of the propagation medium. This paper is devoted to experimental study of the channel frequency-correlation properties in a typical indoor environment. Frequency autocorrelation functions are experimentally determined for the signal envelope and carrier phase on four different indoor radio links. The estimates of the channel coherence bandwidth and multipath delay spread are performed, and the influence of the line-of-sight component (LOS) is considered. Our experiments showed that, depending on the LOS intensity, the coherence bandwidth on typical indoor radio links of 20-meters length varies from 8 MHz to 25 MHz (for the correlation level of 0.2), whereas for samples of the carrier phase, the coherence bandwidth is somewhat narrower and varies from 6 MHz to 19 MHz. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Multipath propagation |
ru_RU |
dc.subject |
indoor radio communication |
ru_RU |
dc.subject |
channel estimation |
ru_RU |
dc.subject |
frequency correlation |
ru_RU |
dc.subject |
coherence bandwidth |
ru_RU |
dc.subject |
multipath delay spread |
ru_RU |
dc.subject |
differential phase |
ru_RU |
dc.title |
Experimental Study of Channel Frequency-Correlation in an Indoor Multipath Environment for Wireless Key Generation |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|