Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2022 |
Язык | русский |
|
Костина Наталья Николаевна, автор
|
|
Костина Евгения Андреевна, автор
|
Библиографическое описание на языке оригинала |
Kostina, N.N. Metric Characteristics of Hyperbolic Polygons and Polyhedra / Kostina, E.A., Kostina, N.N. // J Math Sci 263, 379–386 (2022). https://doi.org/10.1007/s10958-022-05934-5 |
Аннотация |
In this paper, we consider some properties of hyperbolic polyhedra, both common with Euclidean and specific. Asymptotic behavior of metric characteristics of polyhedra in the n-dimensional hyperbolic space is examined in the cases where parameters of the polyhedra change and the dimension of the space unboundedly increases; in particular, the radius of the inscribed sphere of a polyhedron is estimated and its asymptotic behavior is obtained. In connection with this, the problem of estimating the minimal number of faces of the described polyhedron in the n-dimensional hyperbolic space depending on the radius of the inscribed sphere is posed. We also consider some properties of hyperbolic polygons that belong to both absolute geometry or only to hyperbolic geometry. |
Ключевые слова |
Lobachevsky space,
hyperbolic trigonometry,
polygon,
polyhedron,
sphere,
simplex |
Название журнала |
Journal of Mathematical Sciences
|
URL |
https://link.springer.com/article/10.1007/s10958-022-05934-5 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=268689 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Костина Наталья Николаевна |
ru_RU |
dc.contributor.author |
Костина Евгения Андреевна |
ru_RU |
dc.date.accessioned |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2022 |
ru_RU |
dc.identifier.citation |
Kostina, N.N. Metric Characteristics of Hyperbolic Polygons and Polyhedra / Kostina, E.A., Kostina, N.N. // J Math Sci 263, 379–386 (2022). https://doi.org/10.1007/s10958-022-05934-5 |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=268689 |
ru_RU |
dc.description.abstract |
Journal of Mathematical Sciences |
ru_RU |
dc.description.abstract |
In this paper, we consider some properties of hyperbolic polyhedra, both common with Euclidean and specific. Asymptotic behavior of metric characteristics of polyhedra in the n-dimensional hyperbolic space is examined in the cases where parameters of the polyhedra change and the dimension of the space unboundedly increases; in particular, the radius of the inscribed sphere of a polyhedron is estimated and its asymptotic behavior is obtained. In connection with this, the problem of estimating the minimal number of faces of the described polyhedron in the n-dimensional hyperbolic space depending on the radius of the inscribed sphere is posed. We also consider some properties of hyperbolic polygons that belong to both absolute geometry or only to hyperbolic geometry. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Lobachevsky space |
ru_RU |
dc.subject |
hyperbolic trigonometry |
ru_RU |
dc.subject |
polygon |
ru_RU |
dc.subject |
polyhedron |
ru_RU |
dc.subject |
sphere |
ru_RU |
dc.subject |
simplex |
ru_RU |
dc.title |
Metric Characteristics of Hyperbolic Polygons and Polyhedra. |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|