Форма представления | Статьи в зарубежных журналах и сборниках |
Год публикации | 2022 |
Язык | английский |
|
Бикчентаев Айрат Мидхатович, автор
|
Библиографическое описание на языке оригинала |
A. Bikchentaev, Characterization of certain traces on von Neumann algebras // L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications.
ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference,
Al Ain, UAE, March 28–April 1, 2021, Springer, 2022. -- P. 279--289.
|
Аннотация |
L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28–April 1, 2021 |
Ключевые слова |
Hilbert space, linear operator, von Neumann algebra, $C^*$-algebra, block projection operator, weight, trace, tracial inequality, commutativity
|
Название журнала |
L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28–April 1, 2021
|
Ссылка для РПД |
http://dspace.kpfu.ru/xmlui/bitstream/handle/net/173179/bik_proc2.pdf?sequence=1&isAllowed=y
|
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=271347 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Бикчентаев Айрат Мидхатович |
ru_RU |
dc.date.accessioned |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2022 |
ru_RU |
dc.identifier.citation |
A. Bikchentaev, Characterization of certain traces on von Neumann algebras // L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications.
ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference,
Al Ain, UAE, March 28–April 1, 2021, Springer, 2022. -- P. 279--289.
|
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=271347 |
ru_RU |
dc.description.abstract |
L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28–April 1, 2021 |
ru_RU |
dc.description.abstract |
Consider a unital $C^*$-algebra $\mathcal{A}$. Let $n\geq 2$ and let $P_1, \ldots , P_n$ be projections in $\mathcal{A}$ such that $P_1 + \ldots +P_n=I$. We costruct $\mathcal{P}_n\colon \mathcal{A}\to \mathcal{A}$ being a block projection operator given by the formula $\mathcal{P}_n(X)=\sum_{k=1}^n P_kXP_k$ for all $X\in \mathcal{A}$.
For a weight $\varphi$ on a von Neumann algebra $\mathcal{A}$, we prove that $\varphi$ is a trace if and only if
$\varphi (\mathcal{P}_2(A))=\varphi (A)$ for all $A\in \mathcal{A}^+$.
We also prove that if $\mathcal{A}$ is a von Neumann algebra then
for a normal semifinite weight $\varphi$ on $\mathcal{A}$ the following conditions are equivalent: {\rm (i)} $\varphi$ is a trace; {\rm (ii)} $\varphi((A^{m/2}B^mA^{m/2} )^k)\leq\varphi ((A^{k/2}B^kA^{k/2})^m)$ for all $A, B\in\mathcal{A}^+$ and
some numbers $k,m \in\mathbb{R}$ such that $k>m>0$;
{\rm (iii)} $\varphi (|\mathcal{P}_n(A)|)\leq\varphi (|A|)$ for all $A\in \mathcal{A}$ and
for all projections $P_1, \ldots , P_n\in \mathcal{A}$.
As a consequence, we obtain a criterions for commutativity of von Neumann algebras and $C^*$-algebras. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
Hilbert space |
ru_RU |
dc.subject |
linear operator |
ru_RU |
dc.subject |
von Neumann algebra |
ru_RU |
dc.subject |
$C^*$-algebra |
ru_RU |
dc.subject |
block projection operator |
ru_RU |
dc.subject |
weight |
ru_RU |
dc.subject |
trace |
ru_RU |
dc.subject |
tracial inequality |
ru_RU |
dc.subject |
commutativity
|
ru_RU |
dc.title |
Characterization of certain traces on von Neumann algebras |
ru_RU |
dc.type |
Статьи в зарубежных журналах и сборниках |
ru_RU |
|