Форма представления | Тезисы и материалы конференций в российских журналах и сборниках |
Год публикации | 2022 |
Язык | английский |
|
Халиуллин Самигулла Гарифуллович, автор
|
Библиографическое описание на языке оригинала |
S.G. Haliullin. Total convex structures and ultraproducts. // Proceedings of the Mathematical Center named after N.I. Lobachevsky. V.63. International Conference ”Complex Analysis and Related Topics”. Abstracts. – Kazan: KFU, 2022. – V. 63. – p. 25
|
Аннотация |
Proceedings of the Mathematical Center named after N.I. Lobachevsky. V.63. International Conference ”Complex Analysis and Related Topics”. Abstracts. |
Ключевые слова |
convex structure, ultraproducts |
Название журнала |
Proceedings of the Mathematical Center named after N.I. Lobachevsky. V.63. International Conference ”Complex Analysis and Related Topics”. Abstracts.
|
URL |
https://drive.google.com/file/d/183x3a7YG8yxYT4JimsQUuDw20uWAN4tG/view |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=273553 |
Полная запись метаданных  |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Халиуллин Самигулла Гарифуллович |
ru_RU |
dc.date.accessioned |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2022 |
ru_RU |
dc.identifier.citation |
S.G. Haliullin. Total convex structures and ultraproducts. // Proceedings of the Mathematical Center named after N.I. Lobachevsky. V.63. International Conference ”Complex Analysis and Related Topics”. Abstracts. – Kazan: KFU, 2022. – V. 63. – p. 25
|
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=273553 |
ru_RU |
dc.description.abstract |
Proceedings of the Mathematical Center named after N.I. Lobachevsky. V.63. International Conference ”Complex Analysis and Related Topics”. Abstracts. |
ru_RU |
dc.description.abstract |
It is well known that the set of states of a certain quantum mechanical
system is closed from the point of view of the operational approach
when mixtures or convex combinations are formed. That is, if s1 and s2
are states, then so is λs1 + (1 − λ)s2, where 0 < λ < 1. We will can
easy to define a convex combination of elements in linear space, but
unfortunately linear space is artificial and lacks physical meaning for
states. Only the operation of forming mixtures of states has meaning.
For this reason, an abstract definition of mixtures is defined that is
independent of the concept of linearity. We will called this framework a
convex structure.
Ultraproducts of the sequences of these structures are also considered. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
convex structure |
ru_RU |
dc.subject |
ultraproducts |
ru_RU |
dc.title |
Total convex structures and ultraproducts |
ru_RU |
dc.type |
Тезисы и материалы конференций в российских журналах и сборниках |
ru_RU |
|