Форма представления | Иные электронные образовательные ресурсы |
Год публикации | 2023 |
Язык | английский |
|
Гильмуллин Мансур Файзрахманович, автор
|
|
Гильмуллин Тимур Мансурович, автор
|
Библиографическое описание на языке оригинала |
T. Gilmullin, M. Gilmullin. How to quickly find anomalies in number series using the Hampel method. - https://forworktests.blogspot.com/2023/01/how-to-quickly-find-anomalies-in-number.html |
Аннотация |
In practice, there are problems for the solution of which it is required to find anomalies in the numerical series. Such tasks are found in various areas: in data science, machine learning, cybersecurity, algorithmic trading, etc.
The article shows examples of how to quickly and efficiently find anomalies in numerical series using the modified Hampel method (Hampel F.R.) using sliding windows.
To filter a number series for the presence of anomalies in it, it is proposed to use the Python implementation of the HampelFilter() function. The use of the created functions is possible, among other things, using the example of the problem of searching for outliers in stock data.
|
Ключевые слова |
anomaly, cybersecurity, data science, machine learning, python, outliers, series, filtering, Hampel, Median Absolute Deviation, sliding windows |
URL |
https://forworktests.blogspot.com/2023/01/how-to-quickly-find-anomalies-in-number.html |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=275143 |
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Гильмуллин Мансур Файзрахманович |
ru_RU |
dc.contributor.author |
Гильмуллин Тимур Мансурович |
ru_RU |
dc.date.accessioned |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2023-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2023 |
ru_RU |
dc.identifier.citation |
T. Gilmullin, M. Gilmullin. How to quickly find anomalies in number series using the Hampel method. - https://forworktests.blogspot.com/2023/01/how-to-quickly-find-anomalies-in-number.html |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=275143 |
ru_RU |
dc.description.abstract |
In practice, there are problems for the solution of which it is required to find anomalies in the numerical series. Such tasks are found in various areas: in data science, machine learning, cybersecurity, algorithmic trading, etc.
The article shows examples of how to quickly and efficiently find anomalies in numerical series using the modified Hampel method (Hampel F.R.) using sliding windows.
To filter a number series for the presence of anomalies in it, it is proposed to use the Python implementation of the HampelFilter() function. The use of the created functions is possible, among other things, using the example of the problem of searching for outliers in stock data.
|
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
anomaly |
ru_RU |
dc.subject |
cybersecurity |
ru_RU |
dc.subject |
data science |
ru_RU |
dc.subject |
machine learning |
ru_RU |
dc.subject |
python |
ru_RU |
dc.subject |
outliers |
ru_RU |
dc.subject |
series |
ru_RU |
dc.subject |
filtering |
ru_RU |
dc.subject |
Hampel |
ru_RU |
dc.subject |
Median Absolute Deviation |
ru_RU |
dc.subject |
sliding windows |
ru_RU |
dc.subject |
anomaly |
ru_RU |
dc.subject |
cybersecurity |
ru_RU |
dc.subject |
data science |
ru_RU |
dc.subject |
machine learning |
ru_RU |
dc.subject |
python |
ru_RU |
dc.subject |
outliers |
ru_RU |
dc.subject |
series |
ru_RU |
dc.subject |
filtering |
ru_RU |
dc.subject |
Hampel |
ru_RU |
dc.subject |
Median Absolute Deviation |
ru_RU |
dc.subject |
sliding windows |
ru_RU |
dc.title |
How to quickly find anomalies in number series using the Hampel method |
ru_RU |
dc.type |
Иные электронные образовательные ресурсы |
ru_RU |
|