Форма представления | Статьи в российских журналах и сборниках |
Год публикации | 2022 |
Язык | английский |
|
Лернер Эдуард Юльевич, автор
Мухамеджанова Софья Альфисовна, автор
|
Библиографическое описание на языке оригинала |
Lobachevskii Journal of Mathematics, 2022, Vol. 43, No. 12, pp. 3552–3561 Matiyasevich Formula for Chromatic and Flow Polynomials and Feynman Amplitudes. E. Yu. Lerner and S. A. Mukhamedjanova |
Аннотация |
Matiyasevich formula which expresses the chromatic polynomial of an arbitrary graph through a linear combination of flow polynomials of subgraphs of the original graph is generalized by using the Feynman amplitudes technique. The article presents a formula expressing a flow
polynomial through a linear combination of chromatic polynomials of constricted graphs. This proof is obtained by using the Feynman amplitudes technique. A simple proof of Matiyasevich formula and its consequences are derived by using the same technique. |
Ключевые слова |
chromatic polynomial, flow polynomial, Matiyasevich formula, Feynman amplitides, Fourier transform |
Название журнала |
Lobachevskii Journal of Mathematics
|
URL |
https://trebuchet.public.springernature.app/get_content/37236c90-67f6-4a09-9746-d5994b2e8558 |
Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на эту карточку |
https://repository.kpfu.ru/?p_id=278425 |
Файлы ресурса | |
|
Полная запись метаданных |
Поле DC |
Значение |
Язык |
dc.contributor.author |
Лернер Эдуард Юльевич |
ru_RU |
dc.contributor.author |
Мухамеджанова Софья Альфисовна |
ru_RU |
dc.date.accessioned |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.available |
2022-01-01T00:00:00Z |
ru_RU |
dc.date.issued |
2022 |
ru_RU |
dc.identifier.citation |
Lobachevskii Journal of Mathematics, 2022, Vol. 43, No. 12, pp. 3552–3561 Matiyasevich Formula for Chromatic and Flow Polynomials and Feynman Amplitudes. E. Yu. Lerner and S. A. Mukhamedjanova |
ru_RU |
dc.identifier.uri |
https://repository.kpfu.ru/?p_id=278425 |
ru_RU |
dc.description.abstract |
Lobachevskii Journal of Mathematics |
ru_RU |
dc.description.abstract |
Matiyasevich formula which expresses the chromatic polynomial of an arbitrary graph through a linear combination of flow polynomials of subgraphs of the original graph is generalized by using the Feynman amplitudes technique. The article presents a formula expressing a flow
polynomial through a linear combination of chromatic polynomials of constricted graphs. This proof is obtained by using the Feynman amplitudes technique. A simple proof of Matiyasevich formula and its consequences are derived by using the same technique. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
chromatic polynomial |
ru_RU |
dc.subject |
flow polynomial |
ru_RU |
dc.subject |
Matiyasevich formula |
ru_RU |
dc.subject |
Feynman amplitides |
ru_RU |
dc.subject |
Fourier transform |
ru_RU |
dc.title |
Matiyasevich Formula for Chromatic and Flow Polynomials and Feynman Amplitudes. |
ru_RU |
dc.type |
Статьи в российских журналах и сборниках |
ru_RU |
|